Показать сообщение отдельно
Старый 13.05.2018, 10:55   #14
Тарасенко
Guest
 
Пол:
Локация:
Сообщений: n/a
По умолчанию

УДК 553.981/982. 553.94 554.3 553.18

Происхождение землетрясений на Основе электроразрядов в земной коре

Актауский государственный университет им. Ш.Есенова

The example of the construction of the planet Land serves the spherical concretion, formed to account electroplating in oilgaswater-bearing layers. During electro blasting are formed fireballs, possessing powerful electromagnetic and gravitational by floor attracting dissolved chemical elements from layers fluids. Formation to oils links with these process exactly.

Электрлі жарылыстар кезінде куатты электрлі магнитті және қабаттағы сұйықтардан ерітілген химиялық элементтерді тартып алатын әлемдік тартылыстық өрісі бар шарға ұқсас найзағайлар пайда болады. Мұнайдың пайда болуы тіке осы процестермен байланысты.

Строение планеты Земля весьма оригинально и практично, познание ее продолжается до сих пор. Оно основано на вращении геосфер от ядра до поверхности. Передача движений происходит на основе ротационного режима планеты Земля /1/, т. е. происходит вращение геосфер от ядра до мантии и эти движения достигают поверхности. Гашение скорости начинает происходить на уровне геосфер передаваемой от ядра, вращение которого достигает 20-40 м/сек (по экспериментальным данным Уруцкоева М. /2/), нижней и верхней мантии со скоростью 1-10 м/год. Вращение геосфер и приводит литосферу в движение и создает гравитационное, геомагнитное и электрическое поле планеты Земля, где создаются все условия для воспроизводства полезных ископаемых, за счет электровзрывов /3/.

Глубинные профили МОГТ, проведенные в различных частях света (России, США, Казахстана и др.), показывают, что границы М зарегистрированы на глубинах 11-12с, с учетом глубины в океанах, что также служит охлаждением ядерно-плазменных реакций в мантии и ядре планеты Земля. Все приведенные глубинные сейсмические профили (Рис. 1-2) интерпретируются как один общий тектонический процесс эволюции планеты Земля, связанный с постоянной механической конвекцией в ее недрах с самого зарождения. Движения в земной коре приводят к круговороту горных пород в природе, и только такой механизм может образовать жизнедеятельность любой планеты во Вселенной. Отсюда вытекает, что природа заложила основы механизма воспроизводства любых полезных ископаемых, включая углеводороды.


Рис.1. Сейсмический профиль МОГТ в Атлантическом океане.



Рис.2. Сейсмический профиль МОГТ Астраханской ГЭ сейсмопартии 2. 1. 90. через Каракульско-Смушковскую зону дислокаций.

Подтверждением электроразрядов в земной коре служат также землетрясения, которые являются одной из актуальных проблем науки о Земле, одной из главных задач физики Земли и самой острой задачей сейсмологии /12, 14, 15/.

О перспективах прогноза высказывается два противоположных мнения: прогноз необходим и возможно создание средств для надёжного прогноза; прогноз невозможен, а малые вероятности прогноза на данный период способны принести не меньший ущерб, чем от самого землетрясения.

Главный аргумент «против»: хотя подготовка землетрясений отражается в самых разных природных явлениях, характер и интенсивность каждого из них изменяются случайным образом от события к событию. Кроме того, многие из этих явлений могут оказаться следствием процессов, вообще не связанных с подготовкой сильных землетрясений. Каждое сильное землетрясение уникально и по многим параметрам не совместимо с другим землетрясением, прошедшем в том же районе. Прогнозные признаки, выявленные после прошедшего землетрясения, зачастую не совпадают перед следующим землетрясением. Описано более сотни прогнозных признаков, получены десятки патентов на изобретения по прогнозу землетрясений, но известно лишь несколько прогнозов, спасшие жизнь сотням тысяч людей.

Казалось бы, аргументы «против» очень убедительны, но обилие ненадёжных признаков или ложных предвестников ещё не доказывают, что нет устойчивых прогнозных признаков.

Прогноз необходим и возможно создание средств для надёжного прогноза. Это утверждение базируется на том простом предположении, что при длительной подготовке землетрясений и очень большой накапливаемой энергии в зоне подготовки, должны происходить мощные волновые процессы. В условиях пониженной прочности неоднородной дислоцированной верхней части земной коры дополнительные напряжения, вызываемые длиннопериодными деформационными процессами, могут быть достаточными для частичного разрушения среды и переизлучения части энергии в виде сейсмических волн в широком диапазоне частот – эмиссий.

Задача заключается в выборе диапазона частот, при которых происходят резонансные явления. Частоты, излучаемые вращением геосфер, где идёт подготовка землетрясений, должны быть близкими с собственной частотой колебания земной коры.

При сейсмическом микрорайонировании городов, промышленных объектов, а также перспективных участков под промышленную и гражданскую застройку, обычно рассматривается мощность зоны малых скоростей, залегающей на жестком основании.

Увеличение сотрясаемости на мягких осадках, по мнению многих учёных, связано с задержкой сейсмических волн в результате полного контрастного сопротивления между осадками и подстилающими породами, когда имеются латеральные неоднородности. Эта задержка воздействует не только на объёмные волны, но и на поверхностные, которые развиваются на этих неоднородностях.

Столкновения между такими задержанными волнами приводят к резонансным явлениям, форма и частота которых связана с геометрическими и механическими свойствами структуры.

Фундаментальная резонансная частота для одномерной структуры выражается простым соотношением:

F0 =Vsi/4H

Fmo = (2n-1) F0 (гармоническая),

где Vsi-скорость «S» волны в поверхностном слое;

H – мощность излучения.

Поэтому значение фундаментальной частоты при учёте поверхностных неоднородностей располагается в диапазоне 0,2 Гц для осадков большей мощности или для экстремально мягких грунтов, 10 Гц и более для очень тонких слоёв (делювий или выветрелые породы).

Более низкие резонансные частоты выявляются при неоднородностях в слое мощностью на два порядка больше зоны малых скоростей. Если считать, что земная кора является зоной малых скорости по сравнению с верхней мантии (скорость «Р» волн в земной коре 6 км/сек, в верхней мантии 8,1 км/сек), то фундаментальная частота для земной коры:

F0 = 3,4 км/сек/200

т. е. период Т0 фундаментальной резонансной частоты для земной коры равен 58-59 сек.

Сеть стационарных сейсмических станций с аналоговой записью, расположенных на территории Кыргызстана, оснащены сейсмоприёмниками СКД с наибольшим периодом 2 сек. На части станций установлены также сейсмоприёмники СКД с наибольшим периодом 20 сек. Чувствительность этих сейсмических станций 1500 для СКД и 50000 для СКМ. Это не позволяло наблюдать низкочастотные колебания.

В пределах Чуйской впадины и её горного обрамления (Бишкекский прогностический полигон) в 1992 году 10 сейсмических станций группы KNET цифровой записью и телеметрической передачей данных на пункт обработки.

Частотные характеристики аппаратуры позволяют получать непрерывные записи в широком диапазоне частот 0,01 гц до 200 гц (период от 100 сек до 0.05), а динамический диапазон до 140 дб.

Анализ этих записей показал, что колебания с периодом 58 – 60 сек и их гармоник, являются самыми интенсивными колебаниями на непрерывной записи. Интенсивность их на 2-3 порядка выше других зарегистрированных волн – помех на больших частотах. Низкочастотные колебания регистрируются только на горизонтальных составляющих приборов, это говорит о том, что эти волны относятся к типу поперечных и несут информацию о направление горизонтальных движений земной коры, совпадающих с данными GPS.

Для разных станций интенсивность этой волны изменяется в пределах 20·104 усл. ед., но на каждой из станций амплитуда этой волны остаётся неизменной в течение длительного времени (до 100 дней) с разбросом по амплитуде не более 5-10%.

Было отмечено, что перед ощутимым землетрясением интенсивность этих колебаний каждой станции резко изменяется.

Для оценки интенсивности низкочастотной волны с периодом 58 сек, и её гармоник, необходимо было отфильтровать всё более высококачественные волны и получить полный вектор этих колебаний. Очень интенсивные колебания с периодом в 5 сек, дополнительно были отфильтрованы режекторным фильтром в диапазоне 0,1 - 0,3 Гц. При определении азимута подхода низкочастотной волны горизонтальные компоненты (математическим путём) проворачивались через 10о по часовой стрелке от 0о до 180о и фиксировались максимальная амплитуда по одной горизонтальной компоненте и минимальная амплитуда колебаний по другой горизонтальной компоненте.

Установлено, что все без исключения землетрясения с К > 13 и значительная часть землетрясений с K > 11 предваряются резкими изменениями амплитуд этой волны по большинству станций, а иногда и азимутами подхода 15-45 дней до землетрясения. Зона действия составляет до 400 км.

Все землетрясения на площади полигона и до 100 км от неё в обязательном порядке вызывает резкие изменения амплитуды волны от землетрясения.

Аналогичные данные получены сетью сейсмических станций «Дельта-ГЕОН» ГНЦ ФГУГП Южморгеология расположенных на территории Краснодарского края в рамках Азово-Черноморского геодинамического полигона оснащенные сейсмоприемниками СК-1П. /12,13/. В обязательном порядке нужно изучать механизмы очагов землетрясения (Рис.3).

Общеизвестно, что существование и развитие единой системы, объединяющей множество явлений разного порядка. Несомненна взаимосвязь и влияние одних параметров этой системы на другие. Поэтому, для более полного учёта всех факторов сопровождающих сейсмические процессы, для изучения физической природы тех явлений, на основе которых в проекте строится система прогноза землетрясений, очень важен комплексный подход, впрочем, это единственно правильный подход в решении такой многоплановой задачи, как прогноз землетрясений /13/. Отслеживание других геофизических полей позволит более полно изучить физику процесса и, в целом, повысить достоверность прогнозных оценок. В проекте предлагается в качестве сопутствующего изучаемого параметра использовать магнитную составляющую магнитного поля Земли (МПЗ), а точнее изменения компонент полного вектора магнитного поля Земли в диапазоне 20 сек. Тем более, предварительные данные полученные в результате ретроспективного анализа вариаций модуля полного вектора МПЗ имеют обнадёживающий характер /13/. Выявлены достаточно устойчивые сигналы соответствующие излучаемому диапазону, отмечена кореллируемость этих сигналов с сейсмическими.

Рис. 3. Схема распределения максимальной горизонтальной погрешности определения координат эпицентра, при глубине очага Н=20 км.

Изучение явления генерации импульсного электромагнитного излучения (ЭМИ) в горных породах в условиях естественного залегания берет начало с лабораторных экспериментов, выполненных в Ленинградском физтехе группой ученых под руководством акад. (1929). При нагружении на сдвиг кристаллов обнаружено, что деформация происходит малыми скачками. В середине 60-х годов проведен поиск ЭМИ на геофизических объектах. С середины 70-х интенсивные исследования ЭМИ проводились в ИФЗ РАН и было показано, что в работах Ленинградского физтеха предложено верное объяснение явления на основе процесса пластичности.

Программно-аппаратурный комплекс «Аларм-Сейсмо-002» зафиксировал аномальные записи ЭМИ на всех четырех каналах за 30-40 мин. до сейсмического события и затем в течение нескольких часов после основного толчка (рис. 4).

На записи ЭМИ четко выделяется как мелкое местное сейсмическое событие 3 ноября 2002 года, так и Нижнекубанское землетрясение 9 ноября.

Однако следует отметить, что однозначная интерпретация материала получаемого в режиме «реального времени», невозможна по причине сильной «зашумленности» эфира и несовершенства алгоритма фильтрации полученного сигнала.

Постановка электромагнитного мониторинга вызвана успешными результатами многолетних исследований в Прибайкалье, где удалось убедительно показать, что по результатам измерений удельного электрического сопротивления как в методах постоянного тока (ВЭЗ, ДЭЗ)

Рис. 4. Запись ЭМИ полученная комплексом «Аларм-Сейсмо-002» за период с 01.11.2002 по 10.11.2002 г.

флуктуациями удельного электрического сопротивления и землетрясениями. Прогноз, ориентировочно, можно делать по результатам измерений удельного электрического сопротивления (Rk) за месяц-полтора до события.

Электрический глубинный разрез по данным аудиомагнитотеллурического зондирования прибором АКФ–4 за ноябрь 2002 года носит в целом спокойный характер. Тем не менее отмечается увеличение Rk связанное, по всей видимостью, с сейсмической активностью 3 и 9 ноября

График изменения Rk и глубинный разрез на ст. Г-180 в ноябре 2002 г. полученные с помощью АКФ-4 показаны на рис. 5.

Рис. 5. Запись данных аудиомагнитотеллурического зондирования аппаратурой; Акф.- стрелками указаны моменты землетрясений.

Изменение содержания химических компонентов в 2002 году. Сразу после землетрясения 10 ноября был выполнен отбор проб со всех наблюдаемых скважин. В эти дни отмечено полное отсутствие гелия в воде, но накануне в течение месяца с 23.09 по 22.10 наблюдается устойчиво аномально высокое содержание гелия (от 14.5 ед. до 136 ед.) с периодически ураганными всплесками, затем в течение 20 дней практически полное его отсутствие (рис. 6).

Гелиевый метод изучения глубинного строения земной коры и сейсмичности основан на использовании гелия как одного из наиболее чутких и надежных геохимических индикаторов глубинной дегазации по зонам активных глубинных разломов. Повышенные и аномально высокие содержания гелия повсеместно трассируют проницаемые тектонические нарушения в земной коре и сопровождаются гидрохимическими аномалиями. Основное преимущество метода заключается в способности выявлять и прослеживать труднофиксируемые традиционными методами «эманирующие» глубинные разломы и узлы их сопряжения, в которых происходит разрядка тектонических напряжений и которые являются главными объектами изучения при сейсмологических исследованиях.

Рис. 6. Содержание Гелия в скважине Г-180 за 2002 г.

Наблюдается аномально низкое содержание метана (за месяц перед землетрясением 9.09 отмечено ураганное содержание), но аномально высокое содержание тяжелых углеводородов, превышающее фоновые значения в 5 раз. Отмечены экстремально низкие значения сульфатов (1.3 ед. при фоне 22.8 ед.), минимальные содержания железа (9.9 ед. при фоне 13.4 ед.), силикат-иона. Особо следует отметить уменьшение рН воды до 6.75 ед., свидетельствующих о поступлении кислых газов из глубин. В данном случае свершение землетрясения сопровождается аномально минимальными геохимическими параметрами (рис. 5).

На следующий день после землетрясения (10.11.02) отмечено:

- полное отсутствие гелия в воде;

- аномально низкое содержание метана;

- аномально высокое содержание тяжелых углеводородов, превышающее фоновые значения в 5 раз;

- экстремально низкие значения сульфатов, карбонатов, кремнекислоты, железа, кальция, магния;

- резкое увеличение в 100 раз содержания ионов водорода (уменьшение рН воды до 6.75 ед.), свидетельствующих о поступлении во время землетрясения кислых газов из глубин и изменения катионного состава воды;

- на некоторых скважинах отмечены высокие содержания кремнекислоты, хлор-, сульфат - и фосфат-ионов, ртути и ураганное содержание железа

Следовательно, землетрясения сопровождаются в основном аномально минимальными геохимическими параметрами. По результатам режимных наблюдений за химическим составом воды 5 скважин Краснодарского края и грязевого вулкана вблизи г. Темрюк в сопоставлении с землетрясениями, зафиксированными станциями «Дельта-Геон» за период с 26.03.02 г. по 25.11.03 года, сделаны следующие вывод - до начала сейсмических толчков происходит изменение состава воды, обусловленное подтоком глубинных минерализованных вод по разрывным нарушениям, сопровождающееся повышением содержания сульфатов, кальция, магния, марганца, кремнекислоты. В это время происходит нарастание содержания в воде гелия, углеводородных газов, углекислого газа, ртути. Нарастание параметров наблюдается за период от 2 до 10 дней в зависимости от магнитуды предстоящего землетрясения. В день землетрясения наблюдается ураганно высокие содержание метана, гелия. Далее после завершения фазы сейсмической нестабильности до наступления следующей фазы химический состав воды стабилизируется, в некоторых скважинах отмечаются резкий спад содержания натрия, кальция, магния, бикарбонатов, карбонатов, хлора.

Рис. 7. Распределение метана на объектах геохимического мониторинга за 2002-2003 годы.

Совместная интерпретация содержания химических компонентов грунтовых вод и данных по электропроводности грунтовых вод и кажущегося сопротивления земли позволяют сделать заключение о тесной взаимосвязи этих параметров и представить изменения электропроводности как интегральный показатель химического и ионного состава грунтовых вод (рис. 7).

Состояние ГГД-поля накануне землетрясении. Многолетние исследования особенностей функционирования подземной гидросферы привели к обнаружению новой разновидности естественного поля - гидрогеодеформационного (ГГД) поля Земли, изменение состояния которого диктуют процессы эволюции напряженно-деформационного состояния земной коры, развивающиеся в реальном времени в пределах всех геологических сооружений планеты.

С 4 ноября структура ГГД – поля начала резко меняться, зоны сжатия Западного Кавказа и Ставропольской возвышенности к 9.11.02 г. (рис.5) слились в единую крупную зону сжатия, охватывающую весь юг Краснодарского края до линии Анапа – Краснодар – Гулькевичи.

Наиболее характерно это фиксировалось по изменению уровня подземных вод в скважине Геленджикского поста НИПИокеангеофизика Г-180 (рис. 6). С 04.11.02 плавное уменьшение уровня воды сменилось резким подъёмом на 70 см 06.11.02. В этот период, а также накануне главного толчка c 07 по 08.11.02 наблюдались температурные осцилляции ±50. В 1998-2000 годах, аналогичное поведение уровня в скважине Геленджикского поста предшествовало прохождению мелких и средних землетрясений на Западном Кавказе и крупных разрушительных - в Турции.

Рис. 8. ГГД поле и сейсмичность Краснодарского края в момент землетрясения 09.11.2002 г.

Рис. 9. Уровень и температура воды в скважине Г-180 (Голубая Бухта)

В связи с этим предлагается:

1. На первом этапе проводить анализ данных по существующим сетям режимных наблюдений за вариациями модуля полного вектора МПЗ.

2. На втором – установить 1-2 автономных магнитовариационных станций регистрирующих составляющие полного вектора МПЗ в наиболее опасных в сейсмическом отношении районах республики.

Афтершоковая деятельность земной коры не влияет на изменение амплитуд. Скольжение геолитодинамических (чешуй, пластин) комплексов в литосфере приводит к разрыву их сплошности, образуя огромные полости (пещеры, карсты). В свою очередь они заполняются флюидами, мигрирующими из зон субдукции (рис. 1). Время заполнения полости занимает от 15 до 45 дней, после чего происходит замыкание природного электроконденсатора (части литосферы) – электроразряда, приводящего к землетрясению /14/. Для прогноза землетрясений, нужно проводить глубинную сейсмику более 20 сек, что позволит подсчитывать время миграции флюидов из зоны субдукции в полость, с момента резкого изменения амплитуд по сейсмологическим данным.

Эти данные указывают на внутреннее земное, а не наведённое с поверхности, происхождение очень сильного импульса, который деформирует земную кору в данном конкретном районе, изменяет амплитуду собственных колебаний земной коры. Этот импульс возникает до самого проявления землетрясения в объёме подготовки землетрясения.

Наиболее перспективными методами за обнаружением этого импульса, наряду с изучением амплитуды азимута подхода низкочастотной волны, считаем изучение магнитного поля на этой частоте, деформационных и наклономерных исследований в нескольких точках на полигоне.

Уже на данном этапе возможно краткосрочное прогнозирование сильных землетрясений в радиусе до 300-350 км.

Заключение

Авторы выражают большую благодарность сейсмологу, геологу, геофизику, пенсионеру из Института сейсмологии Киргизкой Республики Тарасенко Юрию Игнатьевичу, выпускнику МГУ 60-х годов, за помощь в обсуждении сейсмологических материалов по территории Киргизии и Казахстана.

ЛИТЕРАТУРА

2. , , Циноев обнаружение "странного" излучения и трансформации химических элементов // Прикладная физика.-2000.-№4.-с.1-23.
3. Тарасенко нефти, тектоника плит и их будущее // Нефть, газ и бизнес.-2003.-№4.-с. 36-39.
5. Мельников режим Земли – отправной пункт и основа численного и физического моделирования в любых геологических процессах // Тектоника и геодинамика континентальной литосферы. Материалы совещания: М.- 2003, т. – 2, с. 40-44.
6. Трубицын плавающих континентов в глобальной тектонике Земли// Физика Земли.-1998.-№4.-с.20-31.
7. Тарасенко субдукция и обдукция – единый механизм нефтегазо и-структурообразования // Генезис нефти и газа. М.: ГЕОС, 2003. С. 239-240.
8. Тарасенко литосфера - основной источник углеводородов.// Недра Повольжья и Прикаспия–1999.-№18.

12. «Разработка научно-методической основы комплексного мониторинга сейсмической активности Азово-Черноморской зоны ». Ответственный исполнитель . Отчет о выполненных научно-исследовательских работах по государственному контракту (окончательный 2003 г.) УДК 550.34 (470.6).

13. Система для прогнозирования землетрясений, Патент г. Авторы: , , , ,

14. Тарасенко землетрясений с позиций тектоники плит скольжений. Международный семинар «Геодинамика и сейсмичность Средиземноморско-Черноморско-Каспийского региона», тезисы докладов 2-6 октября 2006 г. Геленджик. с. 34-37.

15. , Демичева аспекты шаровых молний. Тезисы 14 Российской конференции по “Холодной трансмутации ядер химических элементов и шаровых молний”. Москва, Дагомыс, Сочи. 1-8 октября 2006 года. с. 79.

16. Воробьев условия залегания и свойства глубинного вещества. (Высокие электрические поля в земных недрах). - Томск: Изд-во ТГУ. 1975. 296с.

15. Воробьев и преобразование видов энергии в недрах. - Томск: Изд-во ТГУ. 1980. 211с.

17. , Демичева в земной коре и их роль в образовании нефти. ХV Международная научная школа им. Академика «Деформирование и разрушение материалов с дефектами, и динамические явления в горных породах и выработках» Крым, Алушта, 19-25 сентября 2005г.

18. , Демичева шаровых конкреций - есть новый вид энергии. Семинар-совещание «Инновационный потенциал Мангистауской области»., г. Актау, декабрь 2005 года.

19. , Демичева шаровых конкреций. VI Международная конференция «Мониторинг опасных геологических процессов и экологического состояния среды» Украина, Киев. 6-8 октября 2005г.

20. , , Чекалин природных систем и экстремальные явления. Материалы 13 Российской конференции по “Холодной трансмутации ядер химических элементов и шаровых молний”. Москва, Дагомыс, Сочи. 11-18 сентября 2005 года. с. 330-346.

Новая модель планеты Земля и образования нефти

NEW MODEL OF THE PLANET LAND AND FORMATION TO OIL

ЖЕР ПЛАНЕТАСЫНЫҢ МОДЕЛІ ЖӘНЕ МҰНАЙДЫҢ ПАЙДА БОЛУЫ

к. г.-м. н., доцент кафедры «Геология»

г. Актау, 24 мкр., ИНГ АктГУ им. Ш.Есенова.

, 414327.

м/т 87014207046

е-mail: *****@***ru