Непознанное

Вернуться   Непознанное форум, новости о НЛО, паранормальных явлениях, аномальных зонах, эзотерике, науке, будущем > Непознанное > Наука и технологии
Контакты Все темы форума Регистрация Справка Сообщество Календарь Сообщения за день Поиск

Наука и технологии Обсуждаем новости науки, современная наука...новейшие технологии

 
 
Опции темы Опции просмотра
Prev Предыдущее сообщение   Следующее сообщение Next
Старый 28.10.2008, 05:36   #1
Taf
Administrator
 
Аватар для Taf
 
Регистрация: 13.09.2008
Возраст: 37
Пол: Мужской
Локация:
Сообщений: 1,856
Вес репутации: 35
Taf На правильном пути
Отправить сообщение для Taf с помощью ICQ 405508061
Ссылка на профиль пользователя на сайте vkontakte.ru
Thumbs up Уменьшить размер процессоров в 10 раз

Нажмите на изображение для увеличения
Название: 91.jpeg
Просмотров: 852
Размер:	20.1 Кб
ID:	243
Предел производительности обусловлен неумолимыми физическими причинами: в стандартных условиях у кремния уже при размерности около 10 нанометров начинают проявляться квантовые эффекты и "течёт" электрический заряд. Но до 10 нанометров ещё необходимо добраться. Именно это и обещают нам инженеры из Беркли (иллюстрация с сайта howstuffworks.com/Guy Crittenden/Digital Vision).

До каких пор транзисторы будут ужиматься в размерах? Уже давно учёные задаются этим вопросом, подстёгиваемые постоянным ростом требований к производительности компьютеров. Трудолюбивые американцы китайского происхождения не погнались за квантовыми кубитами в небе, а использовали вполне земные технологии для достижения впечатляющей наноточности.
О новом перспективном способе производства интегральных микросхем сообщает группа разработчиков из Беркли (UC Berkeley). Отчёт об этой работе опубликован в журнале Nature Nanotechnology.
Технология представляет собой альтернативу традиционной оптической печати, ныне применяемой подавляющим большинством производителей микроэлектроники, и состоит в улучшении характеристик передачи света посредством его сжатия.
Нажмите на изображение для увеличения
Название: 92.jpeg
Просмотров: 840
Размер:	24.3 Кб
ID:	244
Упрощённая модель печати интегральной микросхемы. Кремниевую подложку покрывают резистивным материалом, чувствительным только к ультрафиолетовому излучению. Следующим слоем накладывают так называемую диффузионную маску. При облучении области под маской остаются "транзисторными", формируя необходимый рисунок. Потом всё это дело в несколько этапов обрабатывают специальными химикалиями – и микросхема готова (иллюстрация Nature).

Зачём вообще нужна эта передача света? Почему её необходимо улучшать?
Оптическая литография в целом похожа на обычное фотографирование: облучение светочувствительного материала формирует изображение, которое потом проявляется.
"Работает довольно неплохо, — поясняет один из авторов изобретения Лян Пань (Liang Pan). — Однако разрешение ограничено фундаментальными свойствами света: для минимизации размеров наносимых элементов необходимо сокращать длину волны".
И вот здесь как раз возникают сложности – в виде дифракционных эффектов. Дело в том, что при укорачивании электромагнитным излучением становится тяжелее управлять.
Зависит дифракция от соотношения между длиной волны и размером неоднородностей среды (либо неоднородностей структуры самого излучения). Другими словами, чем короче, тем выше риск непредвиденной трансформации – вразрез с генеральной линией партии.
Название: 93.gif
Просмотров: 843

Размер: 68.7 Кб
Дифракция может существенно изменить параметры волны (иллюстрация с сайта smeter.net).

На сегодняшний день минимальный размер традиционной фокусировки составляет 30-35 нанометров – причём достигнут он ценой невероятных усилий и гигантских затрат. Новая же методика, по уверениям учёных, способна не только непринуждённо взять текущий нанобарьер, но и значительно превзойти его. При умеренных расходах на производство.
Технология называется плазмонной литографией (plasmonic lithography): она предусматривает гравировку схемы с помощью специальной головки – плазмонной линзы, – через которую пропускается "традиционный" ультрафиолетовый свет. Кремниевая подложка при этом вращается, так что весь процесс напоминает проигрывание виниловой пластинки, где линза является "иглой".
Впрочем, аналоговые ассоциации на этом заканчиваются: плазмоника позволяет опуститься до миниатюрных масштабов – в масштабах промышленных. По крайней мере, так думают разработчики.
"Мы сможем уменьшить размер существующих процессоров в 10 раз, при выигрыше в мощности, — утверждает руководитель исследования Сян Чжан (Xiang Zhang). – Если же вдруг кто захочет себе харды с ультравысокой плотностью записи, от 10 до 100 раз превышающей текущие показатели, то и это нам будет по силам".
Нажмите на изображение для увеличения
Название: 94.jpeg
Просмотров: 869
Размер:	30.2 Кб
ID:	245
Металлическая "игла" фокусирует свет, используя возбуждённые электроны – плазмоны – на поверхности линзы (иллюстрация Liang Pan, Cheng Sun/UC Berkeley).

Инженеры из Беркли обошли дифракцию, используя проводящие свойства металлов, на поверхности которых всегда найдётся парочка свободных электронов, – они начинают кол*****ся при соударении с фотонами. Эти колебания известны как эванесцентные или исчезающие волны (evanescent waves), и они как бы сокращают свет до длины меньшей, чем она может быть у оптической волны.
Чтобы реализовать "исчезающие" эффекты на практике, потребовались серебряные плазмонные линзы, уложенные концентрическими слоями, – они способны фокусировать свет до точки диаметром 100 нанометров.
В итоге удалось нанести на подложку линейные паттерны шириной 80 нанометров при скорости сканирования 12 м/с. Казалось бы, не так круто, если учесть, что современные "традиционные" рекорды находятся в диапазоне 30-80 нанометров. Но тут стоит учесть, что это всего лишь пробный пуск. Американцы уверены – в будущем технология позволит поднять ставки до 5-10 нанометров.
В любом случае, превратив линзу в "иглу", учёные получили мощный инструмент, способный воспроизвести на вращающейся кремниевой подложке с фоторезистором самую изощрённую топографию интегральной схемы.
Нажмите на изображение для увеличения
Название: 95.jpeg
Просмотров: 859
Размер:	81.2 Кб
ID:	246
Матрица 4 х 4 из плазмонных линз под электронным микроскопом (иллюстрация Xiang Zhang Lab, UC Berkeley).

В головку "проигрывателя" теоретически можно упаковать до 100 тысяч линз, что позволит выполнять "гравировочные" работы любой сложности и на высокой скорости.
Пришлось преодолеть и кое-какие трудности. Поскольку поверхностные колебания затухают на расстоянии до 100 нанометров, фоторезисторное покрытие должно быть расположено очень близко к линзе. Что не так просто устроить.
Ограничение удалось обойти с помощью опоры на воздушной подушке (air bearing) – это позволило поддерживать расстояние между двумя поверхностями около 20 нанометров.
"Это как если бы Boeing 747 должен был лететь на двухмиллиметровой высоте", — поясняет Сян Чжан. Отметим, что он очень ревниво относится к конкурирующим технологиям. По мнению профессора, они "напоминают улиток", а его разработка найдёт промышленное применение в течение трёх лет (максимум – пяти) и не ограничится плазмонными линзами.
Что ж, настрой у американца самый серьёзный: недавно мы уже писали о первом плаще-невидимке в области видимого спектра, разработанном в его лаборатории.

Источник: membrana.ru (внешка)
Taf вне форума   Ответить с цитированием
 


Здесь присутствуют: 1 (пользователей: 0 , гостей: 1)
 

Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Быстрый переход


Часовой пояс GMT +3, время: 12:20.

Рейтинг сайтов Ufolog.ru
Форум Непознанное основан в 2008 году. При копировании материалов форума, обратная ссылка обязательна.   Обратная связь - Непознанное. - Вверх

Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd. Перевод: zCarot