Непознанное

Вернуться   Непознанное форум, новости о НЛО, паранормальных явлениях, аномальных зонах, эзотерике, науке, будущем > Непознанное > Наука и технологии
Контакты Все темы форума Регистрация Справка Сообщество Календарь Сообщения за день Поиск

Наука и технологии Обсуждаем новости науки, современная наука...новейшие технологии

Ответ
 
Опции темы Опции просмотра
Старый 03.10.2008, 00:54   #1
RapStar
Модератор
 
Аватар для RapStar
 
Регистрация: 27.09.2008
Пол: Мужской
Локация:
Сообщений: 174
Вес репутации: 19
RapStar На правильном пути
Отправить сообщение для RapStar с помощью ICQ 86-306-920
Ссылка на профиль пользователя на сайте vkontakte.ru
Post Исаак Ньютон

Исаак Ньютон

(1642—1726)

Исаак Ньютон родился в день Рождественского праздника 1642 года в деревушке Вульстор в Линкольншире Отец его умер еще до рождения сына Мать Ньютона, урожденная Айскоф, вскоре после смерти мужа преждевременно родила, и новорожденный Исаак был поразительно мал и хил. Думали, что младенец не выживет, однако, дожил до глубокой старости и всегда, за исключением кратковременных расстройств и одной серьезной болезни, отличался хорошим здоровьем.

По имущественному положению семья Ньютонов принадлежала к числу фермеров средней руки. Первые три года жизни маленький Исаак провел исключительно на попечении матери. Но, выйдя вторично замуж за священника Смита, мать поручила ребенка бабушке, своей матери. Когда Исаак подрос, его устроили в начальную школу. По достижении двенадцатилетнего возраста мальчик начал посещать общественную школу в Грантэме. Его поместили на квартиру к аптекарю Кларку, где он прожил с перерывами около шести лет. Жизнь у аптекаря впервые возбудила в нем охоту к занятиям химией, что касается школьной науки, она не давалась Ньютону. По всей вероятности, главная вина в этом случае должна быть отнесена на счет неспособности учителей. С детства будущий ученый любил сооружать разные механические приспособления — и навсегда остался, прежде всего, механиком.

Живя у Кларка, Исаак сумел подготовиться к университетским занятиям 5 июня 1660 года, когда Ньютону еще не исполнилось восемнадцати лет, он был принят в коллегию Троицы Кембриджский университет был в то время одним из лучших в Европе здесь одинаково процветали науки филологические и математические Ньютон обратил главное внимание на математику. О первых трех годах пребывания Ньютона в Кембридже известно немногое. Судя по книгам университета, в 1661 году он был «субсайзером». Так назывались бедные студенты, не имевшие средств платить за учение и еще недостаточно подготовленные к слушанию настоящего университетского курса. Они посещали некоторые лекции и вместе с тем должны были прислуживать более богатым. Только в 1664 году Ньютон стал настоящим студентом; в 1665 году он получил степень бакалавра изящных искусств (словесных наук).

Его первые научные опыты связаны с исследованиями света. В результате многолетней работы Ньютон установил, что белый солнечный луч представляет собой смесь многих цветов. Ученый доказал, что при помощи призмы белый цвет можно разложить на составляющие его цвета. Изучая преломление света в тонких пленках, Ньютон наблюдал дифракционную картину, получившую название «колец Ньютона». В полной мере значимость данного открытия была осознана лишь во второй половине XIX века, когда на его основе возник спектральный анализ — новый метод, позволявший изучать химический состав даже удаленных от Земли звезд.

В 1666 году в Кембридже началась какая-то эпидемия, которую по-тогдашнему обычаю сочли чумой, и Ньютон удалился в свой Вульстор. Здесь в деревенской тиши, не имея под рукой ни книг, ни приборов, жив почти отшельнической жизнью, двадцатичетырехлетний Ньютон предался глубоким философским размышлениям. Плодом их было гениальней
шее из его открытий — учение о всемирном тяготении.

Был летний день. Ньютон любил размышлять, сидя в саду, на открытом воздухе. Предание сообщает, что размышления Ньютона были прерваны падением налившегося яблока. Знаменитая яблоня долго хранилась в назидание потомству, позднее засохла, была срублена и превращена в исторический памятник в виде скамьи.

Ньютон давно размышлял о законах падения тел, и весьма возможно что падение яблока опять навело его на размышления. Сам Ньютон писал много лет спустя, что математическую формулу, выражающую закон все мирного тяготения, он вывел из изучения знаменитых законов Кеплера.

Ньютон никогда не мог бы развить и доказать своей гениальной идеи если бы не обладал могущественным математическим методом, которого не знал ни Гук, ни кто-либо иной из предшественников Ньютона — это анализ бесконечно малых величин, известный теперь под именем дифференциального и интегрального исчислений. Задолго до Ньютона многие философы и математики занимались вопросом о бесконечно малых, но ограничились лишь самыми элементарными выводами.

В 1669 году Ньютон уже был профессором математики этого университета, унаследовав кафедру, которой руководил знаменитый математик того времени Исаак Барроу. Именно там Ньютон совершил свое первое крупное открытие. Почти одновременно с немецким математиком Лейбницем он создал важнейшие разделы математики — дифференциальное и интегральное исчисления. Но открытия Ньютона касались не только математики.

Ньютон создал свой метод, опираясь на прежние открытия, сделанные им в области анализа, но в самом главном вопросе он обратился к помощи геометрии и механики.

Когда именно Ньютон открыл свой новый метод, в точности неизвестно. По тесной связи этого способа с теорией тяготения следует думать, что он был выработан Ньютоном между 1666 и 1669 годами и, во всяком случае, раньше первых открытий, сделанных в этой области Лейбницем.

Возвратившись в Кембридж, Ньютон занялся научной и преподавательской деятельностью. С 1669 по 1671 год он читал лекции, в которых излагал свои главные открытия относительно анализа световых лучей; но ни одна из его научных работ еще не была опубликована. Ньютон все еще продолжал работать над усовершенствованием оптических зеркал. Отражательный телескоп Грегори с отверстием в середине, объективного зеркала не удовлетворял Ньютона. «Невыгоды этого телескопа, — говорит он, — показались мне весьма значительными, и я счел необходимым изменить конструкцию, поставив окуляр сбоку трубы».

Тем не менее в области техники телескопного дела оставалось еще много работы. Ньютон сначала пытался шлифовать увеличительные стекла, но после открытий, сделанных им относительно разложения световых лучей, он оставил мысль об усовершенствовании преломляющих телескопов и взялся за шлифовку вогнутых зеркал.

Сделанный Ньютоном телескоп может с полным правом считаться первым отражательным телескопом. Затем ученый сделал вручную еще один телескоп больших размеров и лучшего качества.

Об этих телескопах узнало, наконец, Лондонское королевское общество, которое обратилось к Ньютону через посредство своего секретаря Ольденбурга с просьбою сообщить подробности изобретения. В 1670 году Ньютон передал свой телескоп Ольденбургу — событие весьма важное в его жизни, так как этот инструмент впервые сделал имя Ньютона известным всему тогдашнему ученому миру. В конце 1670 года Ньютон был избран в члены Лондонского королевского общества.

В 1678 году умер секретарь Лондонского королевского общества Ольденбург, относившийся к Ньютону чрезвычайно дружески и с величайшим уважением. Место его занял Гук, хотя и завидовавший Ньютону, но невольно признававший его гений.

Надо заметить, что Гук сыграл свою роль в выдающихся открытиях Ньютона. Ньютон полагал, что падающее тело вследствие соединения его движения с движением Земли опишет винтообразную линию. Гук покаэал, что винтообразная линия получается лишь в том случае, если принять во внимание сопротивление воздуха и что в пустоте движение должно быть эллиптическим — речь идет об истинном движении, то есть таком, которое мы могли бы наблюдать, если бы сами не участвовали в движении земного шара.

Проверив выводы Гука, Ньютон убедился, что тело, брошенное с достаточной скоростью, находясь в то же время под влиянием силы земного тяготения, действительно может описать эллиптический путь. Размышляя над этим предметом, Ньютон открыл знаменитую теорему, по которой тело, находящееся под влиянием притягивающей силы, подобной силе земного тяготения, всегда описывает какое-либо коническое сечение, то есть одну из кривых, получаемых при пересечении конуса плоскостью (эллипс, гипербола, парабола и в частных случаях круг и прямая линия).

Сверх того, Ньютон нашел, что центр притяжения, то есть точка, в которой сосредоточено действие всех притягивающих сил, действующих на движущуюся точку, находится в фокусе описываемой кривой Так, центр Солнца находится (приблизительно) в общем фокусе эллипсов, описываемых планетами.

Достигнув таких результатов, Ньютон сразу увидел, что он вывел теоретически, то есть исходя из начал рациональной механики, один из законов Кеплера, гласящий, что центры планет описывают эллипсы и что в фокусе их орбит находится центр Солнца. Но Ньютон не удовольствовался этим основным совпадением теории с наблюдением Он хотел убедиться, возможно ли при помощи теории действительно вычислить элементы планетных орбит, то есть предсказать все подробности планетных движений.

Желая убедиться, действительно ли сила земного тяготения, заставляющая тела падать на Землю, тождественна силе, удерживающей Луну в ее орбите, Ньютон стал вычислять, но, не имея под рукой книг, воспользовался лишь самыми грубыми данными. Вычисление показало, что при таких числовых данных сила земной тяжести больше силы, удерживающей Луну в ее орбите, на одну шестую и как будто существует некоторая причина, противодействующая движению Луны.

Как только Ньютон узнал об измерении меридиана, произведенном французским ученым Пикаром, он тотчас произвел новые вычисления и к величайшей радости своей убедился, что его давнишние взгляды совершенно подтвердились. Сила, заставляющая тела падать на Землю, оказалась совершенно равной той, которая управляет движением Луны.

Этот вывод был для Ньютона высочайшим торжеством Теперь вполне оправдались его слова: «Гений есть терпение мысли, сосредоточенной в известном направлении». Все его глубокие гипотезы, многолетние вычисления оказались верными. Теперь он вполне и окончательно убедился в возможности создать целую систему мироздания, основанную на одном простом и великом начале. Все сложнейшие движения Луны, планет и даже скитающихся по небу комет стали для него вполне ясными. Явилась возможность научного предсказания движений всех тел Солнечной системы, а быть может, и самого Солнца, и даже звезд и звездных систем.

В конце 1683 года Ньютон, наконец, сообщил Королевскому обществу основные начала своей системы, изложив их в виде ряда теорем о движении планет. Свои основные выводы Ньютон представил в фундаментальном труде под названием «Математические начала натуральной философии». До конца апреля 1686 года первые две части его книги были готовы и посланы в Лондон.

В области механики Ньютон не только развил положения Галилея и других ученых, но и дал новые принципы, не говоря уже о множестве замечательных отдельных теорем.

По словам самого Ньютона, еще Галилей установил начала, названные Ньютоном «двумя первыми законами движения» Ньютон формулирует эти законы так:

1) Всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения, пока на него не подействует какая-либо сила и не заставит его изменить это состояние.

2) Изменение движения пропорционально движущей силе и направлено по прямой, по которой действует данная сила.

Сверх этих двух законов Ньютон сформулировал еще третий закон движения, выразив его так:

3) Действие всегда равно и прямо противоположно противодействию, то есть действия двух тел друг на друга всегда равны и направлены в противоположные стороны.

Установив общие законы движения Ньютон вывел из них множество следствий и теорем, позволивших ему довести теоретическую механику до высокой степени совершенства. С помощью этих теоретических начал он подробно выводит свой закон тяготения из законов Кеплера и затем решает обратную задачу, то есть показывает, каково должно быть движение планет, если признать закон тяготения за доказанный.

Открытие Ньютона привело к созданию новой картины мира, согласно которой все планеты, находящиеся друг от друга на колоссальных расстояниях, оказываются связанными в одну систему Этим законом Ньютон заложил начало новой отрасли астрономии — небесной механики, которая сегодня изучает движение планет и позволяет рассчитывать их
положение в пространстве.

Ньютон смог рассчитать орбиты, по которым движутся спутники Юпитера и Сатурна, а пользуясь этими данными, определить, с какой силой Земля притягивает Луну. В свою очередь все эти данные будут использованы при будущих околоземных космических полетах.

Дальнейшие исследования Ньютона позволили ему определить массу и плотность планет и самого Солнца. Ньютон показал, что плотность Солнца вчетверо менее плотности Земли, а средняя плотность Земли приблизительно равна плотности гранита и вообще самых тяжелых каменных пород. Относительно планет Ньютон установил, что наиболее близкие к Солнцу планеты отличаются наибольшею плотностью.

Далее Ньютон приступил к вычислению фигуры земного шара. Он показал, что Земля имеет сфероидальную форму, а именно представляет как бы шар, расширенный у экватора и сплюснутый у полюсов.

Ученый доказал зависимость приливов и отливов от совместного действия Луны и Солнца на воды морей и океанов.

Что касается собственно так называемой «небесной механики», Ньютон не только продвинул, но, можно сказать, создал эту науку, так как до него существовал лишь ряд эмпирических данных. Весьма любопытна данная Ньютоном теория движения комет, которую он считал недостаточно разработанной и напечатал лишь по настоянию Галлея Благодаря расчетам Ньютона, Галлей смог предсказать появление огромной кометы, которая действительно появилась на небосводе в 1759 году. Она была названа кометой Галлея.

В 1842 году известный немецкий астроном Бессель на основе закона Ньютона предсказал существование невидимого спутника у звезды Сириус. Открытие этого спутника через 10 лет явилось доказательством того, что закон всемирного тяготения не только действует в Солнечной системе, но и является одним из общих законов вселенной.

В 1688 году Ньютон был избран в парламент, хотя и незначительным большинством голосов, и заседал в так называемом Конвенте впредь до его роспуска.

В 1689 году Ньютона постигло семейное горе- умерла от тифа его мать. Извещенный о ее болезни, он испросил в парламенте отпуск и поспешил к ней. Целые ночи проводил великий ученый у постели матери, сам давал ей лекарства и приготовлял горчичники и мушки, ухаживая за больной как самая лучшая сиделка Но болезнь оказалась роковою. Смерть матери глубоко огорчила Ньютона и, быть может, немало способствовала сильной нервной раздражительности, проявившейся у него несколько позднее болезни.

Но и после своей болезни Ньютон продолжал научную работу, хотя и не с прежней интенсивностью. Он окончательно разработал теорию движения Луны и подготовил повторные издания своего бессмертного труда, в которых сделал много новых, весьма важных дополнений. После болезни он создал свою теорию астрономической рефракции, то есть преломления лучей светил в слоях земной атмосферы. Наконец, после болезни Ньютон решил несколько весьма трудных задач, предложенных другими математиками.

Ньютону было уже за пятьдесят лет. Несмотря на свою огромную славу и блестящий успех его книги (издание принадлежало не ему, а Королевскому обществу), Ньютон жил в весьма стесненных обстоятельствах, а иногда просто нуждался: случалось, что он не мог уплатить пустячного членского взноса. Жалованье его было незначительно, и Ньютон тратил все, что имел, частью на химические опыты, частью на помощь своим родственникам; он помогал даже своей старинной любви — бывшей мисс Сторей.

В 1695 году материальные обстоятельства Ньютона изменились Близкий друг и поклонник Ньютона Чарльз Монтегю, молодой аристократ, лет на двадцать моложе Ньютона, был назначен канцлером казначейства.

Заняв этот пост, Монтегю занялся вопросом об улучшении денежного обращения в Англии, где в то время, после ряда войн и революций, было множество фальшивой и неполновесной монеты, что приносило огромный ущерб торговле. Монтегю вздумал перечеканить всю монету.

Чтобы придать наибольший вес своим доказательствам, Монтегю обратился к тогдашним знаменитостям, в том числе и к Ньютону. И ученый не обманул ожиданий своего друга Он взялся за новое дело с чрезвычайным усердием и вполне добросовестно, причем своими познаниями в химии и математической сообразительностью оказал огромные услуги стране. Благодаря этому трудное и запутанное дело перечеканки было удачно выполнено в течение двух лет, что сразу восстановило торговый кредит.

Вскоре после того Ньютон из управляющего монетным двором был сделан главным директором монетного дела и стал получать 15 тысяч рублей в год; эту должность он занимал до самой смерти При чрезвычайно умеренном образе жизни Ньютона из жалованья у него образовался целый капитал.

В 1701 году Ньютон был избран членом парламента, а в 1703 году стал президентом английского Королевского общества. В 1705 году английский король возвел Ньютона в рыцарское достоинство.

Ньютона отличали скромность и застенчивость Он долго не решался опубликовать свои открытия, и даже собирался уничтожить некоторые из глав своих бессмертных «Начал». «Я только потому стою высоко, — сказал Ньютон, — что стал на плечи гигантов».

Доктор Пембертон, познакомившийся с Ньютоном, когда последний был уже стар, не мог надивиться скромности этого гения. По его словам, Ньютон был чрезвычайно -приветлив, не имел ни малейшей напускной эксцентричности и был чужд выходкам, свойственным иным «гениям». Он отлично приспосабливался ко всякому обществу и нигде не обнаруживал ни малейшего признака чванства. Зато и в других Ньютон не любил высокомерно-авторитетного тона и особенно не терпел насмешек над чужими убеждениями.

Ньютон никогда не вел счета деньгам. Щедрость его была безгранична. Он говаривал: «Люди, не помогавшие никому при жизни, никогда никому не помогли». В последние годы жизни Ньютон стал богат и раздавал деньги, но и раньше, когда даже сам нуждался в необходимом, он всегда поддерживал близких и дальних родственников Впоследствии Ньютон пожертвовал крупную сумму приходу, в котором родился, и часто давал стипендии молодым людям. Так, в 1724 году он назначил стипендию в двести рублей Маклорену, впоследствии знаменитому математику, отправив его за свой счет в Эдинбург в помощники к Джемсу Грегори.

С 1725 года Ньютон перестал ходить на службу. Умер Исаак Ньютон в ночь на 20 марта 1726 года во время эпидемии чумы. В день его похорон был объявлен национальный траур. Его прах покоится в Вестминстерском аббатстве, рядом с другими выдающимися людьми Англии.

Последний раз редактировалось RapStar; 03.10.2008 в 01:03.
RapStar вне форума   Ответить с цитированием
Старый 04.10.2008, 02:43   #2
RapStar
Модератор
 
Аватар для RapStar
 
Регистрация: 27.09.2008
Пол: Мужской
Локация:
Сообщений: 174
Вес репутации: 19
RapStar На правильном пути
Отправить сообщение для RapStar с помощью ICQ 86-306-920
Ссылка на профиль пользователя на сайте vkontakte.ru
Post Константин Эдуардович Циолковский

Константин Эдуардович Циолковский

(1857—1935)

В наше время полет космического корабля считается обыденным явлением. И даже странным порою кажется, что еще сто лет назад люди не могли и мечтать о таких полетах. Первым, кто попытался представить практическую сторону освоения космоса, стал скромный учитель из Калуги Константин Эдуардович Циолковский.

Циолковский родился 5 сентября 1857 года в селе Ижевском Рязанской губернии в семье лесничего. Темперамент отца умерял природную пылкость и легкомыслие матери..

В десятилетнем возрасте Костя заболел скарлатиной и потерял слух. Мальчик не смог учиться в школе и вынужден был заниматься самостоятельно.

Вот как вспоминал о годах юности сам ученый:
«Проблески серьезного умственного сознания проявились при чтении. Лет в 14 я вздумал почитать арифметику, и мне показалось все там совершенно ясным и понятным. С этого времени я понял, что книги — вещь немудреная и вполне мне доступная. Я разбирал с любопытством и пониманием несколько отцовских книг по естественным и математическим наукам (отец некоторое время был преподавателем этих наук в таксаторских классах). И вот меня увлекает астролябия, измерение расстояния до недоступных предметов, снятие планов, определение высот. Я устраиваю высотометр. С помощью астролябии, не выходя из дома, я определяю расстояние до пожарной каланчи. Нахожу 400 аршин. Иду и проверяю. Оказывается — верно. Так я поверил теоретическому знанию .

Отец вообразил, что у меня технические способности, и меня отправили в Москву. Но что я мог там сделать со своей глухотой! Какие связи завязать? Без знания жизни я был слепой в отношении карьеры и заработка Я получал из дома 10—15 рублей в месяц. Питался одним черным хлебом, не имел даже картошки и чаю. Зато покупал книги, трубки, ртуть, серную кислоту и прочее».

Итак, когда Константину исполнилось шестнадцать лет, отец отправил его в Москву к своему знакомому Н Федорову, работавшему библиотекарем Румянцевского музея. Под его руководством Циолковский много занимался и осенью 1879 года сдал экзамен на звание учителя народных училищ.

«Наконец после рождества (1880), — пишет в своей книге воспоминаний Циолковский, — я получил известие о назначении меня на должность учителя арифметики и геометрии в Боровское уездное училище. По указанию жителей попал на хлеба к одному вдовцу с дочерью, жившему на окраине города, поблизости реки. Дали две комнаты и стол из супа и каши. Был доволен и жил тут долго. Хозяин, человек прекрасный, но жестоко выпивал. Часто беседовали за чаем, обедом или ужином с его дочерью. Поражен был ее пониманием Евангелия. Пора было жениться, и я женился на ней без любви, надеясь, что такая жена не будет мною вертеть, будет работать и не помешает мне делать то же. Эта надежда вполне оправдалась. Венчаться мы ходили за четыре версты, пешком, не наряжались, в церковь никого не пускали. Вернулись, и никто о нашем браке ничего не знал. До брака и после него я не знал ни одной женщины, кроме жены...Мне совестно интимничать, но не могу же я лгать. Говорю про дурное и хорошее. Браку я придавал только практическое значение уже давно, чуть не с шестнадцати лет, разорвал теоретически со всеми нелепостями вероисповеданий. В день венчания купил у соседа токарный станок и резал стекла для электрических машин. Все же про свадьбу пронюхали как-то музыканты. Насилу их выпроводили. Напился только венчавший поп. И то угощал его не я, а хозяин...Я никогда не угощал, не праздновал, сам никуда не ходил и мне моего жалованья хватало. Одевались мы просто, в сущности, очень бедно, но в заплатах не ходили и никогда не голодали.. Были маленькие семейные сцены и ссоры, но я сознавал себя всегда виновным и просил прощения. Так мир восстанавливался. Преобладали все же работы: я писал, вычислял, паял, стругал, плавил и прочее. Делал хорошие поршневые воздушные насосы, паровые машины и разные опыты. Приходил гость и просил показать паровую машину. Я соглашался, но только предлагал гостю наколоть лучины для отопления паровика».

В Боровске Циолковский проработал несколько лет и в 1892 году был переведен в Калугу. В этом городе и прошла вся его дальнейшая жизнь. Здесь он преподавал физику и математику в гимназии и епархиальном училище, а все свободное время посвящал научной работе. Не имея средств на покупку приборов и материалов, он все модели и приспособления для опытов делал собственными руками.

Круг интересов Циолковского был очень широк. Однако из-за отсутствия систематического образования он часто приходил к результатам уже известным в науке. Например, так произошло с его первой научной работой, посвященной проблемам газовой динамики.

Но за вторую опубликованную работу «Механика животного организма» Циолковский был избран действительным членом Русского физико-химического общества. Эта работа заслужила положительные отзывы крупнейших ученых того времени Д. Менделеева и А. Столетова.

Столетов познакомил Циолковского со своим учеником Николаем Жуковским, после чего Циолковский стал заниматься механикой управляемого полета. Ученый построил на чердаке своего дома примитивную аэродинамическую трубу, на которой производил опыты с деревянными моделями.

Накопленный им материал был положен в основу проекта управляемого аэростата. Так Циолковский назвал дирижабль, поскольку само это слово в то время еще не придумали. Циолковский не только первым предложил идею цельнометаллического дирижабля, но и построил его работающую модель. При этом ученый создал и оригинальный прибор для автоматического управления полетом дирижабля, а также оригинальную схему регулирования его подъемной силы.

Однако чиновники из русского технического общества отвергли проект Циолковского из-за того, что одновременно с ним с аналогичным предложением выступил австрийский изобретатель Шварц. Тем не менее Циолковскому удалось опубликовать описание своего проекта в журнале «Научное обозрение» и таким образом закрепить за собой приоритет на это изобретение.

После дирижабля Циолковский перешел к исследованию аэродинамики самолета. Он детально исследовал влияние формы крыла на величину подъемной силы и вывел соотношение между сопротивлением воздуха и необходимой мощностью двигателя самолета. Эти работы были использованы Жуковским при создании теории расчета крыла.

В дальнейшем интересы Циолковского переключились на исследования космического пространства- В 1903 году он опубликовал книгу «Исследования мировых пространств реактивными приборами», где впервые доказал, что единственным аппаратом, способным совершить космический полет, является ракета. Правда, Циолковскому не хватало математических знаний, и он не смог дать детальные расчеты ее конструкции. Однако ученый выдвинул целый ряд важных и интересных идей.

Те первые работы ученого прошли почти незамеченными. Учение о реактивном звездолете только тогда было замечено, когда начало печататься вторично, в 1911—1912 годах, в известном распространенном и богато издающемся столичном журнале «Вестник воздухоплавания». Тогда многие ученые и инженеры за границей заявили о своем приоритете. Но благодаря ранним работам Циолковского его приоритет был доказан.

В этой статье и последовавших ее продолжениях (1911 и 1914 годах) он заложил основы теории ракет и жидкостного ракетного двигателя. Им впервые была решена задача посадки космического аппарата на поверхность планет, лишенных атмосферы.

Открытия ученого долгое время оставались неизвестными большинству специалистов. Его деятельность не встречала необходимой поддержки.

У него была большая семья (семь человек детей) и маленькое жалованье. За все свои труды до октябрьских событий 1917 года получил он 470 рублей от Императорской академии наук. И жизнь была трудной, иногда попросту голодной, и немало было горя в ней и слез, лишь две
дочери пережили отца, горькой чашей испытаний не обнесла его судьба... Он был убежденный домосед. Больших трудов стоило уговорить его даже на поездку в Москву, когда торжественно отмечали его семидесятипятилетие.

Революция улучшило положение ученого.

«При Советском правительстве, обеспеченный пенсией, я мог свободнее отдаться своим трудам, и, почти незамеченный прежде, я возбудил теперь внимание к своим работам. Мой дирижабль признан особенно надежным изобретением. Для исследования реактивного движения образовались ГИДРы и институт... Мое семидесятилетие было отмечено прессой. Через пять лет мой юбилей даже торжественно отпраздновали в Москве и Калуге. Я награжден был орденом...и значком активиста от Осоавиахима. Пенсия увеличена...»

В 1926—1929 годы Циолковский решает практический вопрос: сколько же нужно взять топлива в ракету, чтобы получить скорость отрыва и покинуть Землю. Константину Эдуардовичу удалось вывести формулу, которая называется формулой Циолковского.

Выяснилось, что конечная скорость ракеты зависит от скорости вытекающих из нее газов и от того, во сколько раз вес топлива превышает вес пустой ракеты. На практике нужно еще учитывать притяжение небесных тел и сопротивление воздуха, там, где он есть.

Расчет показывает: для того чтобы жидкостная ракета с людьми развила скорость отрыва и отправилась в межпланетный полет, нужно взять топлива в сто раз больше, чем весит корпус ракеты, двигатель, механизмы, приборы и пассажиры, вместе взятые. А это вновь создает очень серьезное препятствие.

Ученый нашел оригинальный выход — ракетный поезд, многоступенчатый межпланетный корабль. Он состоит из многих ракет, соединенных между собой. В передней ракете, кроме топлива, находятся пассажиры и снаряжение. Ракеты работают поочередно, разгоняя весь поезд. Когда топливо в одной ракете выгорит, она сбрасывается, при этом удаляются опустощенные баки и весь поезд становится легче. Затем начинает работать вторая ракета и т. д. Передняя ракета, как по эстафете, получает скорость, набранную всеми предыдущими ракетами.

Любопытно, что, не имея практически никаких приборов, Циолковский рассчитал оптимальную высоту для полета вокруг Земли — это промежуток от трехсот до восьмисот километров над Землей. Именно на этих высотах и происходят современные космические полеты.

Узнав о работах Циолковского, немецкий ученый Герман Оберт написал ему: «Зная Ваши превосходные работы, я обошелся бы без многих напрасных трудов и сегодня продвинулся бы гораздо дальше».

Космические полеты и дирижаблестроение были главными проблемами, которым он посвятил свою жизнь. Но говорить о Циолковском только как об отце космонавтики — значит обеднить его вклад в современную науку и технику.

Еще не была рождена астроботаника, десятилетия нужно ждать еще опытов по синтезу сложных органических молекул в условиях межзвездной среды, а Циолковский с убежденностью отстаивает идею разнообразия форм жизни во Вселенной. С треском разламывались на глазах ипподромной толпы легкие, похожие на этажерки самолетики, а Циолковский писал в 1911 году: «Аэроплан будет самым безопасным способом передвижения». Кстати, задолго до этого он первый предложил «выдвигающиеся внизу корпуса» — колеса, опередив создание первого колесного шасси в самолете братьев Райт. Словно догадываясь о будущем открытии лазера, он ставил инженерную задачу сегодняшнего дня: космическую связь с помощью «параллельного пучка электромагнитных лучей с небольшой длиной волны, электрических или даже световых...». Не было ни одной счетно-решающей машины, да и потребности жизни не взывали еще к спасительному могуществу числовых абстракций, а Циолковский предсказывал: «...математика проникнет во все области знания». Ему принадлежит разработка принципа движения на воздушной подушке, реализованного только много лет спустя.

Умер Циолковский 19 сентября 1935 года.

«Ракета для меня только способ, только метод проникновения в глубину космоса, но отнюдь не самоцель... Будет иной способ передвижения в космосе, — приму и его... Вся суть — в переселении с Земли и в заселении космоса». Из этого высказывания К.Э. Циолковского следует важный вывод — будущее человечества связано с покорением просторов Вселенной: «Вселенная принадлежит человеку!»

Последний раз редактировалось RapStar; 04.10.2008 в 02:50.
RapStar вне форума   Ответить с цитированием
Старый 04.10.2008, 02:56   #3
RapStar
Модератор
 
Аватар для RapStar
 
Регистрация: 27.09.2008
Пол: Мужской
Локация:
Сообщений: 174
Вес репутации: 19
RapStar На правильном пути
Отправить сообщение для RapStar с помощью ICQ 86-306-920
Ссылка на профиль пользователя на сайте vkontakte.ru
Post Генрих Рудольф Герц

Генрих Рудольф Герц

(1857—1894)

В истории науки не так много открытий, с которыми приходится соприкасаться каждый день. Но без того, что сделал Генрих Герц, современную жизнь представить уже невозможно, поскольку радио и телевидение являются необходимой частью нашего быта, а он сделал открытие именно в этой области.

Генрих Рудольф Герц родился 22 февраля 1857 года в семье адвоката, позже ставшего сенатором. Мальчик был слабым и болезненным, но благополучно преодолел необычайно трудные для него первые годы жизни, и, к радости родителей, выровнялся, стал здоровым и жизнерадостным.

Все считали, что он пойдет по стопам отца. И действительно, Генрих поступил в Гамбургское реальное училище и собирался изучать юриспруденцию. Однако после того, как у них в училище начались занятия по физике, его интересы круто изменились. К счастью, родители не мешали мальчику искать свое призвание и разрешили ему перейти в гимназию, окончив которую, он получал право поступления в университет.

Получив аттестат зрелости. Герц уехал в 1875 году в Дрезден и поступил в высшее техническое училище. Вначале ему там понравилось, но постепенно юноша понял, что карьера инженера не для него. 1 ноября 1877 года он отправил родителям письмо, где были такие слова: «Раньше я часто говорил себе, что быть посредственным инженером для меня предпочтительнее, чем посредственным ученым. А теперь думаю, что Шиллер прав, сказав: «Кто трусит рисковать жизнью, тот не добьется в ней успеха». И эта излишняя моя осторожность была бы с моей стороны безумием».

Поэтому он ушел из училища и отправился в Мюнхен, где был принят сразу на второй курс университета. Проведенные в Мюнхене годы показали, что университетских знаний недостаточно; для самостоятельных научных занятий необходимо было найти ученого, который согласился бы стать его научным руководителем. Вот почему после окончания университета Герц отправился в Берлин, где устроился ассистентом в лаборатории крупнейшего немецкого физика того времени Германа Гельмгольца.

Гельмгольц вскоре заметил талантливого юношу, и между ними установились хорошие отношения, которые впоследствии перешли в тесную дружбу и одновременно в научное сотрудничество. Под руководством Гельмгольца Герц защитил диссертацию и стал признанным специалистом в своей области.

Гельмгольц в своем некрологе вспоминает начало научного пути Герца, когда он предложил ему тему для студенческой работы из области электродинамики, «будучи уверен, что Герц заинтересуется этим вопросом и успешно его разрешит». Таким образом, Гельмгольц ввел Герца в ту область, в которой ему впоследствии пришлось сделать фундаментальные открытия и обессмертить себя. Характеризуя состояние электродинамики в то время (лето 1879 года), Гельмгольц писал: «...область электродинамики превратилась в то время в бездорожную пустыню. Факты, основанные на наблюдениях и следствиях из весьма сомнительных теорий, — все это было вперемежку соединено между собой». Именно в этот год Герц родился как ученый.

Начинающего ученого всецело захватила работа над обязательной для выпускника университета докторской диссертацией, которую он хотел закончить как можно скорее. 5 февраля 1880 года Генрих Герц был увенчан степенью доктора наук с редким в истории Берлинского университета, да еще у таких строгих профессоров, как Кирхгоф и Гельмгольц, предикатом — с отличием. Его дипломная работа «Об индукции во вращающемся шаре» была теоретической, и он продолжал заниматься теоретическими изысканиями в физическом институте при университете.

Но Генрих Герц стал сомневаться, так как он считал, что теоретические работы, опубликованные им, случайны для него как для ученого. Его все больше и больше стали привлекать эксперименты.

По рекомендации своего учителя в 1883 году Герц получил должность доцента в Киле, а через шесть лет стал профессором физики в Высшей технической школе в Карлсруэ. Здесь у Герца была своя собственная экспериментальная лаборатория, которая обеспечила ему свободу творчества, возможность заниматься тем, к чему он чувствовал интерес и признание. Герц осознал, что больше всего на свете его интересует электричество, быстрые электрические колебания, над изучением которых он трудился еще в студенческие годы. Именно в Карлсруэ начался наиболее плодотворный период его научной деятельности, который, к сожалению, продолжался недолго.

В работе 1884 года Герц показывает, что максвелловская электродинамика обладает преимуществами по отношению к обычной, но считает не доказанным, что она является единственно возможной. В дальнейшем Герц, однако, остановился на компромиссной теории Гельмгольца. Гельмгольц взял у Максвелла и Фарадея признание роли среды в электромагнитных процессах, но в отличие от Максвелла считал, что действие незамкнутых токов должно быть отлично от действия замкнутых токов.

Этот вопрос изучал в лаборатории Гельмгольца Н.Н. Шиллер в 1876 году. Шиллер не обнаружил различия между замкнутыми и незамкнутыми токами, как-то и должно было быть по теории Максвелла! Но, видимо, Гельмгольц не удовлетворился этим и предложил Герцу вновь заняться проверкой теории Максвелла.

Подсчеты Герца показали, что ожидаемый эффект даже при наиболее благоприятных условиях будет слишком мал, и он «отказался от разработки задачи». Однако с этих пор он не переставал думать о возможных путях ее решения и его внимание «было обострено в отношении всего, что связано с электрическими колебаниями».

К началу исследований Герца электрические колебания были изучены и теоретически и экспериментально. Герц с его обостренным вниманием к этому вопросу, работая в высшей технической школе в Карлсруэ, нашел в физическом кабинете пару индукционных катушек, предназначавшихся для лекционных демонстраций. «Меня поразило, — писал он, — что для получения искр в одной обмотке не было необходимости разряжать большие батареи через другую и, более того, что для этого достаточны небольшие лейденские банки и даже разряды небольшого индукционного аппарата, если только разряд пробивал искровой промежуток». Экспериментируя с этими катушками, Герц пришел к идее своего первого опыта.

Экспериментальную установку и сами опыты Герц описал в опубликованной в 1887 году статье «О весьма быстрых электрических колебаниях». Герц описывает здесь способ генерации колебаний, «приблизительно в сто раз быстрее наблюденных Феддерсеном». «Период этих колебаний, — пишет Герц, — определяемый, конечно, лишь при помощи теории, измеряется стомиллионными долями секунды. Следовательно, в отношении продолжительности они занимают среднее место между звуковыми колебаниями весомых тел и световыми колебаниями эфира». Но ни о каких электромагнитных волнах длиной порядка трех метров Герц в этой работе не говорит. Все, что он сделал, это сконструировал генератор и приемник электрических колебаний, изучая индукционное действие колебательного контура генератора на колебательный контур приемника при максимальном расстоянии между ними три метра.

В работе «О действиях тока» Герц перешел к изучению явлений на более далеком расстоянии, работая в аудитории длиной 14 метров и шириной 12 метров. Он обнаружил, что если расстояние приемника от вибратора менее одного метра, то характер распределения электрической силы аналогичен полю диполя и убывает обратно пропорционально кубу расстояния. Однако на расстояниях, превышающих три метра, поле убывает значительно медленнее и неодинаково в различных направлениях. В направлении оси вибратора действие убывает значительно быстрее, чем в направлении, перпендикулярном оси, и едва заметно на расстоянии четырех метров, тогда как в перпендикулярном направлении оно достигает расстояний, больших двенадцати метров.

Этот результат противоречит всем законам теории дальнодействия. Герц продолжал исследование в волновой зоне своего вибратора, поле которого он позже рассчитал теоретически. В ряде последующих работ Герц неопровержимо доказал существование электромагнитных волн, распространяющихся с конечной скоростью. «Результаты опытов, поставленных мною над быстрыми электрическими колебаниями, — писал Герц в своей восьмой статье 1888 года, — показали мне, что теория Максвелла обладает преимуществом перед всеми другими теориями электродинамики».

Поле в этой волновой зоне в различные моменты времени Герц изобразил с помощью картины силовых линий. Эти рисунки Герца вошли во 3 все учебники электричества. Расчеты Герца легли в основу теории излучения антенн и классической теории излучения атомов и молекул

Таким образом. Герц в процессе своих исследований окончательно и безоговорочно перешел на точку зрения Максвелла, придал удобную форму его уравнениям, дополнил теорию Максвелла теорией электромагнитного излучения. Герц получил экспериментально электромагнитные волны, предсказанные теорией Максвелла, и показал их тождество с волнами света.

В 1889 году на 62-м съезде немецких естествоиспытателей и врачей Герц прочитал доклад «О соотношении между светом и электричеством». Здесь он подводит итоги своих опытов в следующих словах: «Все эти опыты очень просты в принципе, но, тем не менее, они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно Они означают блестящую победу теории Максвелла... Насколько маловероятным казалось ранее ее воззрение на сущность света, настолько трудно теперь не разделить это воззрение».

В 1890 году Герц опубликовал две статьи: «Об основных уравнениях электродинамики в покоящихся телах» и «Об основных уравнениях электродинамики для движущихся тел». Эти статьи содержали исследования о распространении «лучей электрической силы» и, в сущности, давали то каноническое изложение максвелловской теории электрического поля, которое вошло с тех пор в учебную литературу.

Опыты Герца вызвали огромный резонанс. Особое внимание привлекли опыты, описанные в работе «О лучах электрической силы». «Эти опыты с вогнутыми зеркалами, — писал Герц в «Введении» к своей книге «Исследования по распространению электрической силы», — быстро обратили на себя внимание, они часто повторялись и подтверждались. Они получили положительную оценку, которая далеко превзошла мои ожидания»,

Среди многочисленных повторений опытов Герца особое место занимают опыты русского физика П. Н. Лебедева, опубликованные в 1895 году, первом году после смерти Герца.

В последние годы жизни Герц переехал в Бонн, где также возглавил кафедру физики в местном университете. Там он совершил еще одно крупнейшее открытие. В своей работе «О влиянии ультрафиолетового света на электрический разряд», поступившей в «Протоколы Берлинской Академии наук» 9 июня 1887 года, Герц описывает важное явление, открытое им и получившее впоследствии название фотоэлектрического эффекта.

Это замечательное открытие было сделано благодаря несовершенству герцевского метода детектирования колебаний: искры, возбуждаемые в приемнике, были настолько слабы, что Герц решил для облегчения наблюдения поместить приемник в темный футляр. Однако оказалось, что максимальная длина искры при этом значительно меньше, чем в открытом контуре. Удаляя последовательно стенки футляра, Герц заметил, что мешающее действие оказывает стенка, обращенная к искре генератора. Исследуя тщательно это явление, Герц установил причину, облегчающую искровой разряд приемника, — ультрафиолетовое свечение искры генератора. Таким образом, чисто случайно, как пишет сам Герц, был открыт важный факт, не имевший прямого отношения к цели исследования. Этот факт сразу же привлек внимание ряда исследователей, в том числе профессора Московского университета А.Г. Столетова, особенно тщательно исследовавшего новый эффект, названный им актиноэлектрическим.

Исследовать это явление детально Герц не успел, поскольку скоропостижно умер от злокачественной опухоли 1 января 1894 года. До последних дней жизни ученый работал над книгой «Принципы механики, изложенные в новой связи». В ней он стремился осмыслить собственные открытия и наметить дальнейшие пути исследования электрических явлений.

После безвременной смерти ученого этот труд закончил и подготовил к изданию Герман Гельмгольц В предисловии к книге он назвал Герца самым талантливым из своих учеников и предсказал, что его открытия будут определять развитие науки на многие десятилетия вперед.

Слова Гельмгольца оказались пророческими и начали сбываться уже через несколько лет после смерти ученого. А в XX веке из работ Герца возникли практически все направления современной физики.

Последний раз редактировалось RapStar; 04.10.2008 в 02:59.
RapStar вне форума   Ответить с цитированием
Старый 04.10.2008, 03:05   #4
RapStar
Модератор
 
Аватар для RapStar
 
Регистрация: 27.09.2008
Пол: Мужской
Локация:
Сообщений: 174
Вес репутации: 19
RapStar На правильном пути
Отправить сообщение для RapStar с помощью ICQ 86-306-920
Ссылка на профиль пользователя на сайте vkontakte.ru
Post Джозеф Томсон

Джозеф Томсон

(1856—1940)

Английский физик Джозеф Томсон вошел в историю науки как человек, открывший электрон. Однажды он сказал: «Открытия обязаны остроте и силе наблюдательности, интуиции, непоколебимому энтузиазму до окончательного разрешения всех противоречий, сопутствующих пионерской работе».

Джозеф Джон Томсон родился 8 декабря 1856 года в Манчестере. Здесь, в Манчестере, он окончил Оуэне-колледж, а в 1876—1880 годах учился в Кембриджском университете в знаменитом колледже святой Троицы (Тринити-колледж). В январе 1880 года Томсон успешно выдержал заключительные экзамены и начал работать в Кавендишской лаборатории.

Первая его статья, опубликованная в 1880 году, была посвящена электромагнитной теории света. В следующем году появились две работы, из которых одна положила начало электромагнитной теории массы. Статья называлась «Об электрических и магнитных эффектах, производимых движением наэлектризованных тел». В этой статье выражена та мысль, что «эфир вне заряженного тела является носителем всей массы, импульса и энергии». С увеличением скорости изменяется характер поля, в силу чего вся эта «полевая» масса возрастает, оставаясь все время пропорциональной энергии.

Томсон был одержим экспериментальной физикой в лучшем смысле этого слова. Неутомимый в работе, он настолько привык самостоятельно добиваться поставленной цели, что злые языки поговаривали о его полном пренебрежении к авторитетам. Уверяли, что он предпочитал самостоятельно продумывать любые незнакомые ему вопросы научного характера, вместо того чтобы обратиться к книгам и готовым теориям. Впрочем, это явное преувеличение...

Научные успехи Томсона были высоко оценены директором лаборатории Кавендиша Рэлеем. Уходя в 1884 году с поста директора, он, не колеблясь, рекомендовал своим преемником Томсона. Для самого Джозефа его назначение было неожиданностью.

Известно, что, когда один из американских физиков, стажировавшихся в Кавендишской лаборатории, узнал об этом назначении, он тут же собрал свои пожитки. «Бессмысленно работать под началом профессора, который всего на два года старше тебя...» — заявил он, отплывая на родину. Что ж, у него впереди было много времени, чтобы пожалеть о своей поспешности.

Для такого выбора у старого директора лаборатории были немалые основания. Все, кто близко знал Томсона, единодушно отмечали его неизменную благожелательность и приятную манеру общения, сочетавшуюся с принципиальностью. Позже ученики вспоминали, что их руководитель любил повторять слова Максвелла о том, что никогда не следует отговаривать человека поставить задуманный им эксперимент. Даже если он не найдет того, что ищет, он может открыть нечто иное и вынести для себя больше пользы, чем из тысячи дискуссий.

Так уживались в этом человеке столь разные свойства, как самостоятельность собственных суждений и глубокое уважение к мнению ученика, сотрудника или коллеги. И может быть, именно эти качества обеспечили ему успех в должности руководителя «Кавендиша».

На новый пост Томсон пришел, имея опубликованные работы, убеждение в единстве материального мира и множество планов на будущее. И его первые успехи способствовали авторитету Кавендишской лаборатории. Скоро здесь собралась группа молодых людей, приехавших из самых разных стран. Все они одинаково горели энтузиазмом и готовы были на любые жертвы ради науки. Образовалась школа, настоящий научный коллектив людей, объединенных общностью целей и методов, с мировым авторитетом во главе.

С 1884 по 1919 год, когда его сменил на посту директора лаборатории Резерфорд, Томсон руководил лабораторией Кавендиша. За это время она превратилась в крупный центр мировой физики, в международную школу физиков. Здесь начали свой научный путь Резерфорд, Бор, Ланжевен и многие другие, в том числе и русские ученые.

Завершая в конце жизни книгу своих воспоминаний, Томсон перечисляет среди своих бывших докторантов 27 членов Королевского общества, 80 профессоров, успешно работающих в тринадцати странах. Результат поистине блестящий.

Программа исследований Томсона была широкой: вопросы прохождения электрического тока через газы, электронная теория металлов, исследование природы различного рода лучей...

Взявшись за исследование катодных лучей, Томсон прежде всего решил проверить, достаточно ли тщательно были поставлены опыты его предшественниками, добившимися отклонения лучей электрическими полями. Он задумывает повторный эксперимент, конструирует для него специальную аппаратуру, следит сам за тщательностью исполнения заказа, и ожидаемый результат налицо. В трубке, сконструированной Томсоном, катодные лучи послушно притягивались к положительно заряженной пластинке и явно отталкивались от отрицательной, то есть вели себя так, как и полагалось потоку быстролетящих крошечных корпускул, заряженных отрицательным электричеством. Превосходный результат! Он мог, безусловно, положить конец всем спорам о природе катодных лучей, но Томсон не считал свое исследование законченным. Определив природу лучей качественно, он хотел дать точное количественное определение и составляющим их корпускулам.

Окрыленный первым успехом, он сконструировал новую трубку: катод, ускоряющие электроды в виде колечек и пластинки, на которые можно было подавать отклоняющее напряжение. На стенку, противоположную катоду, он нанес тонкий слой вещества, способного светиться под) ударами налетающих частиц. Получился предок электронно-лучевых трубок, так хорошо знакомых нам в век телевизоров и радиолокаторов.

Цель опыта Томсона заключалась в том, чтобы отклонить пучок корпускул электрическим полем и компенсировать это отклонение полем магнитным. Выводы, к которым он пришел в результате эксперимента, были поразительны. Во-первых, оказалось, что частицы летят в трубке с огромными скоростями, близкими к световым. А во-вторых, электрический заряд, приходившийся на единицу массы корпускул, был фантастически большим. Что же это были за частицы: неизвестные атомы, несущие на себе огромные электрические заряды, или крохотные частицы с ничтожной массой, но зато и с меньшим зарядом?

Далее он обнаружил, что отношение удельного заряда к единице массы есть величина постоянная, не зависящая ни от скорости частиц, ни от материала катода, ни от природы газа, в котором происходит разряд. Такая независимость настораживала. Похоже, что корпускулы были какими-то универсальными частицами вещества, составными частями атомов...

При одной мысли об этом исследователю прошлого века должно было становиться не по себе. Ведь само слово «атом» означало «неделимый». Тысячелетиями, прошедшими со времени Демокрита, атомы являлись символами предела делимости, символами дискретности вещества. И вдруг... Вдруг оказывается, что и у них есть составные части?

Согласитесь, что тут было от чего почувствовать растерянность. Правда к ужасу святотатства примешивался в немалой степени и восторг от предвкушения великого открытия...

Томсон принялся за расчеты. Прежде всего, следовало определить параметры таинственных корпускул, и тогда, может быть, удастся решить, что они собой представляют.

Тонкий почерк ученого покрывает листы бумаги бесконечными цифрами. И вот они, первые результаты расчетов: сомнений нет, неизвестные частицы — не что иное, как мельчайшие электрические заряды, неделимые атомы электричества, или электроны. Они были известны теоретически и даже получили название, но только ему удалось открыть и тем самым окончательно подтвердить их существование экспериментально.

И это сделал он — упрямый английский физик-экспериментатор профессор Джозеф Джон Томсон, которого ученики и коллеги за глаза звали просто Джи-Джи.

29 апреля 1897 года в помещении, где уже более двухсот лет происходили заседания Лондонского королевского общества, назначен его доклад. Большинство собравшихся хорошо знакомы с историей вопроса. Многие сами пытались решить проблемы природы катодных лучей. Имя докладчика обещало интересное сообщение.

И вот Томсон на трибуне. Он высокого роста, худощавый, в очках с металлической оправой. Говорит уверенно, громко. Ассистенты докладчика тут же, на глазах у присутствующих, готовят демонстрационный опыт. Действительно, все, о чем говорил высокий джентльмен в очках, имело место. Катодные лучи в трубке послушно отклонялись и притягивались магнитным и электрическим полями. Причем отклонялись и притягивались именно так, как должны были, если предположить, что они состояли из мельчайших отрицательно заряженных частиц...

Слушатели были в восторге. Они не раз прерывали доклад аплодисментами. Финал же превзошел все ожидания. Такого триумфа этот старинный зал, пожалуй, еще не видел. Почтенные члены Королевского общества вскакивали с мест, спешили к демонстрационному столу, толпились, размахивая руками, и кричали...

Восторг присутствующих объяснялся вовсе не тем, что коллега Дж.Дж. Томсон столь убедительно раскрыл истинную природу катодных лучей. Дело обстояло гораздо серьезнее. Атомы, наипервейшие кирпичики материи, перестали быть элементарными круглыми зернами, непроницаемыми и неделимыми частицами без всякого внутреннего строения . Если из них могли вылетать отрицательно заряженные корпускулы, значит, и представлять собой атомы должны были какую-то сложную систему, состоящую из чего-то заряженного положительным электричеством и из отрицательно заряженных корпускул — электронов.

Название «электрон», некогда предложенное Стонеем для обозначения величины наименьшего электрического заряда, стало именем неделимого «атома электричества».

Теперь стали видны и дальнейшие самые необходимые направления будущих поисков. Прежде всего, конечно, необходимо было определить точно заряд и массу одного электрона, что позволило бы уточнить массы атомов всех элементов, рассчитать массы молекул, дать рекомендации к правильному составлению реакций... Да что говорить, знание точного значения заряда электрона было необходимо как воздух, и потому за опыты по его определению тут же взялись многие физики.

В 1904 году Томсон обнародовал свою новую модель атома. Она представляла собой также равномерно заряженную положительным электричеством сферу, внутри которой вращались отрицательно заряженные корпускулы, число и расположение которых зависело от природы атома. Ученому не удалось решить общую задачу устойчивого расположения корпускул внутри сферы, и он остановился на частном случае, когда корпускулы лежат в одной плоскости, проходящей через центр сферы. В каждом кольце корпускулы совершали довольно сложные движения, которые автор гипотезы связывал со спектрами. А распределение корпускул по кольцам оболочкам соответствовало вертикальным столбцам таблицы Менделеева!

Рассказывают, что однажды журналисты попросили Джи-Джи пояснить наглядно, каким он предполагает строение «своего атома».

— О, это очень просто, — невозмутимо ответил профессор, — скорее всего это нечто вроде пудинга с изюмом...

Так и вошел в историю науки атом Томсона — положительно заряженным «пудингом», нафаршированным отрицательными «изюминками» — электронами.

Томсон и сам прекрасно понимал сложность структуры «пудинга с изюмом». Ученый подошел совсем близко и к выводу, что характер распределения электронов в атоме определяет его место в периодической системе элементов, но только подошел. Окончательный вывод был еще впереди. Многое в предложенной им модели было еще необъяснимо. Никто, например, не понимал, что представляет собой положительно заряженная масса атома и сколько электронов должно содержаться в атомах различных элементов.

Томсон научил физиков управлять электронами, и в этом его основная заслуга. Развитие метода Томсона составляет основу электронной оптики, электронных ламп, современных ускорителей заряженных частиц. В 1906 году Томсону за его исследование прохождения электричества через газы была присуждена Нобелевская премия по физике.

Томсон разработал и методы изучения положительно заряженных частиц. Вышедшая в 1913 году его монография «Лучи положительного электричества» положила начало масс-спектрос копии. Развивая методику Томсона, его ученик Астон построил первый масс-спектрометр и разработал метод анализа и разделения изотопов. В лаборатории Томсона начались первые измерения элементарного заряда из наблюдения движения заряженного облака в электрическом поле. Этот метод был в дальнейшем усовершенствован Милликеном и привел к его ставшим классическими измерениям заряда электрона.

В лаборатории Кавендиша начала свою жизнь и знаменитая камера Вильсона, построенная учеником и сотрудником Томсона Вильсоном в 1911 году.

Таким образом, роль Томсона и его учеников в становлении и развитии атомной и ядерной физики очень велика. Но Томсон до конца своей жизни оставался сторонником эфира, разрабатывал модели движения в эфире, результатом которых, по его мнению, были наблюдаемые явления. Так, отклонение катодного пучка в магнитном поле он интерпретировал как прецессию гироскопа, наделяя совокупность электрического и магнитного полей вращательным моментом.

Умер Томсон 30 августа 1940 года, в трудное для Англии время, когда над ней нависла угроза вторжения гитлеровцев.

Последний раз редактировалось RapStar; 04.10.2008 в 03:09.
RapStar вне форума   Ответить с цитированием
Старый 04.10.2008, 17:47   #5
RapStar
Модератор
 
Аватар для RapStar
 
Регистрация: 27.09.2008
Пол: Мужской
Локация:
Сообщений: 174
Вес репутации: 19
RapStar На правильном пути
Отправить сообщение для RapStar с помощью ICQ 86-306-920
Ссылка на профиль пользователя на сайте vkontakte.ru
Post Зигмунд Фрейд

Зигмунд Фрейд

(1856—1939)

На фоне ситуации, сложившейся в науке конца XIX века, особняком стоит одна из наиболее важных и влиятельных фигур в истории психиатрии, а пожалуй, и вообще в истории западной цивилизации — это Зигмунд Фрейд. Невозможно переоценить вклад Фрейда в науку о природе человека. Еще в начале своей карьеры он сделал вывод, что для лечения психического заболевания необходимо понять его природу, а для того, чтобы разобраться в отдельном феномене, необходимо наблюдать и исследовать его систематически. Это привело к открытию жизненно важного принципа психоанализа как действенного метода исследования. В результате Фрейду удалось впервые объяснить человеческое поведение в психологических понятиях и категориях и продемонстрировать, что поведение это при определенных обстоятельствах можно изменить. Он как бы сблизил понятия лечения и исследования. Его выводы и принципы вызвали к жизни первую всеобъемлющую теорию личности, основанную на наблюдении, а не на умозрительных предположениях.

6 мая 1856 года во Фрайбургской синагоге молились мужчины. У торговца тканями Якоба Фрейда родился мальчик, нареченный в честь деда Зигмундом Семья Амалии и Якоба Фрейд на первенца возлагала особые надежды во время беременности фрау Фрейд предсказали, что ее сыну суждено стать великим человеком. Поскольку текстильная промышленность, основа благополучия города, пребывала в упадке, Фрейды жили в стесненных обстоятельствах. Когда Зигмунду исполнилось три года, семья перебралась в Вену.

У матери он был первенцем, ее «золотым Сигги», и, признавая его исключительные способности, родители ему одному из многочисленных детей выделили отдельную комнату, чтобы Сигги мог спокойно работать. И он не обманул надежд родителей. С блеском окончил школу.

Вскоре мальчик убедился, что и в семье роль главы принадлежит Амалии. Формально признавая первенство мужа, она сама принимала все важные решения. Сильная привязанность сына к матери могла бы многое объяснить проницательному уму. Но в то время такого рода проницательностью не обладал никто. Позже Фрейд теоретически выразил влияние материнских амбиций на его эмоциональное развитие: «Человек, в детстве безгранично любимый матерью, на всю жизнь сохраняет в себе чувство победителя, ту веру в успех, которая зачастую действительно стимулирует успех».

Честолюбивые мечты о почестях и славе стали побудительной силой для Фрейда и во взрослой жизни. Чрезмерная жажда славы была для Фрейда в какой-то мере компенсацией за тот удар, который он получил в возрасте двенадцати лет, когда пошатнулась его вера в силу и авторитет отца. Незнакомец на улице смахнул с головы отца в грязь его новую меховую шапку и крикнул в лицо: «Еврей, убирайся с тротуара!» На возмущенный возглас сына: «И что же ты сделал?» — отец спокойно ответил: «Я сошел с тротуара и поднял шапку». Эта робкая покорность и смирение глубоко задели Зигмунда; ему предстояло добиться того, чего ждала от него семья, не имея за спиной сильной отцовской фигуры, и понадобились четыре десятилетия, прежде чем Фрейд сумел преодолеть в себе возникшую еще в детстве потребность заменить ее каким-то другим идеалом. Окончательно избавиться от этой пассивной тяги к сильной отеческой руке ему удалось лишь тогда, когда он полностью уверовал в свое собственное интеллектуальное совершенство.

После окончания школы, Зигмунд поступил в Венский университет. Причины, побудившие Фрейда выбрать медицинскую карьеру, не совсем ясны. Эта профессия никогда его особенно не привлекала, да он так и не стал традиционным врачом. Как считает Эрнст Джонс, Фрейд выбрал медицину методом исключения. «Для венского еврея выбор лежал между промышленностью и бизнесом, юриспруденцией и медициной. Первые были отброшены сразу, учитывая интеллектуальный склад Фрейда...»

Пытливость в познании природы человека всегда была основным его качеством, и он считал «триумфом своей жизни» то, что в конечном итоге ему удалось найти именно тот путь, к которому он инстинктивно стремился. Фрейд считал, что на его интеллектуальное развитие больше всего повлиял Эрнст Брюкке, один из ведущих физиологов второй половины XIX века. Он предполагал, что к изучению живых организмов применимы принципы физики и химии, и отрицал воздействие в биологии других сил, таких как таинственная живая субстанция. Фрейд твердо усвоил этот строго научный подход и не отступал от него до конца жизни.

Те шесть лет, что Фрейд провел в лаборатории Брюкке, были годами его ученичества. Он досконально овладел методами гистологии, опубликовал несколько заметных статей о репродуктивных клетках угря и нервной системе некоторых низших животных и разработал ряд идей о нервных клетках и их взаимосвязях. Работа в лаборатории ему нравилась, но он не бросал своих философских раздумий. Он регулярно посещал лекции Франца Брентано, заведовавшего кафедрой в Венском университете, тогда же перевел книгу Джона Стюарта Милля.

В 1881 году Фрейд получил медицинский диплом и еще некоторое время продолжал лабораторные занятия в институте Брюкке, готовя себя к академической карьере. Однако он скоро понял, что академическая карьера плохо сочетается с необходимостью зарабатывать себе на жизнь, и по совету Брюкке, решил открыть частную практику как невропатолог, хотя и не испытывал никакого интереса к лечению больных.

Поработав некоторое время ассистентом профессора Германка Нотнагеля, известного терапевта, он получил назначение на такую же должность в психиатрическом институте Мейнерта, где приобрел свой первый опыт в области клинической психиатрии. В 1885 году он подал заявление о приеме на должность приват-доцента по невропатологии и получил это место по рекомендации Брюкке, Мейнерта и Нотнагеля. Отныне для него была открыта дорога к успешной медицинской карьере.

До тридцати лет Фрейд оставался девственником: он боялся женщин. Это его смущало, над ним посмеивались. В двадцать два года Фрейд для солидности отпустил бороду. Его уверенность в том, что в жизни он прекрасно обойдется без женщин, была нарушена 7 мая 1883 года.

Зигмунд спешил в типографию с очередной статьей под мышкой. Его обдала грязью проезжающая коляска. Он не успел увернуться, рукопись упала в лужу. Экипаж остановился, оттуда выглянула милая женская головка. Фрейд замер на месте: на лице девушки было такое искреннее отчаяние, что он сразу позабыл о своем желании устроить скандал. Более того, он почувствовал невероятное волнение. Он не мог дать этому научного объяснения, поскольку ни с чем подобным не сталкивался. Через некоторое время он, наконец, поставил диагноз: это любовь! Но коляска уже умчалась.

Впрочем, на следующий день ему принесли письмо от незнакомки, внизу стояла подпись — Марта Бейрнайс. У доктора просили прощения и приглашали на бал, куда он и отправился не раздумывая. Там Фрейда поджидало еще одно потрясение: к нему подошли две совершенно одинаковые девушки, и он не мог сказать, кто из них была в той карете. А они смеялись, видя его изумление. «Мы сестры, — пояснила одна, — Я — Марта, это — Минна». В июне 1884 года в саду Теленгартен торжественно отпраздновали помолвку Фрейда и Марты Бейрнайс, однако нареченный жених отложил свадьбу до того момента, «когда он разбогатеет».

Женившись на Марте, Зигмунд «не забывал» и о ее сестре. После одного из скандалов, вызванных приступом ревности жены, сорокалетний Фрейд клянется больше не встречаться с Минной. А в письме другу пишет, что отказывается от половой жизни вообще! К тому времени у Фрейда, правда, уже было пятеро детей. Дочь Анна пошла по стопам отца и стала известным психологом.

Работая в институте Мейнерта, Фрейд совершенствовался в невропатологии. Первая из публикаций Фрейда по нейроанатомии касалась корней нейронных связей слухового нерва (1885). Затем он публикует исследовательскую работу о чувствительных нервах и мозжечке (1886), далее еще статью о слуховом нерве (1886). Из его работ по клинической неврологии две были особенно значительны. Так, его книга о детском церебральном параличе и сегодня считается важным вкладом в медицинскую науку; а другая — об афазии (1891) — менее известна, но с точки зрения теории может считаться более фундаментальной.

Работа Фрейда в области неврологии шла параллельно с его первыми опытами как психопатолога в области истерии и гипнотизма Интерес к психологическим аспектам медицины проявился у него в 1886 году, когда он получил стипендию, позволившую ему поехать на стажировку в Париж к профессору Шарко, бывшему тогда в зените славы. К моменту возвращения в Вену Фрейд уже был ревностным сторонником взглядов Шарко на гипноз и истерию. Однако лишь Йозеф Брейер, один из старших коллег, слушал его с пониманием, на остальных же членов медицинского общества отчеты Фрейда о его парижском опыте не произвели особого впечатления. Мейнерт был вообще против гипноза, а работа Фрейда по мужской истерии не привлекла внимания медиков. На столь прохладный
прием Фрейд отреагировал все большим отдалением от медицинского сообщества. Его прежде близкая и теплая, дружеская связь с Мейнертом быстро распалась, и вскоре Фрейд был исключен из лаборатории по анатомии мозга.

После недолгого периода безуспешного экспериментирования с применением различных приемов в 1895 году Фрейд открыл метод свободной ассоциации. Новая техника Фрейда состояла в том, что он предлагал своим пациентам отбросить сознательный контроль над своими мыслями и говорить первое, что придет в голову. Свободная ассоциация, как выяснил Фрейд, через достаточно длительное время подводила пациента к забытым событиям, которые он не только вспоминал, но и вновь проживал эмоционально. Эмоциональное реагирование при свободной ассоциации, в сущности, подобно тому состоянию, которое пациент испытывает во время гипноза, но оно не столь внезапно и бурно выражено, и поскольку реагирование идет порциями, при полном сознании, сознательное «Я» способно справиться с эмоциями, постепенно «прорубая путь сквозь подсознательные конфликты». Именно этот процесс Фрейд и назвал «психоанализом», впервые употребив этот термин в 1896 году.

Фрейд научился читать между строк и постепенно понял значение символов, которыми пациенты выражали глубоко спрятанное. Он назвал перевод этого языка подсознательных процессов на язык повседневности «искусством толкования». Однако по-настоящему все это было осознано и понято лишь после того, как Фрейд раскрыл значение сновидений.

Он заинтересовался сновидениями, заметив, что многие из его пациентов в процессе свободной ассоциации вдруг начинали рассказывать о своих снах. Тогда он стал задавать вопросы о том, какие мысли приходили им в связи с тем или иным элементом сновидения. И заметил, что часто эти ассоциации раскрывали тайный смысл сновидения. Затем он попытался, пользуясь внешним содержанием этих ассоциаций, реконструировать тайный смысл сновидения — его латентное содержание — и таким путем обнаружил особый язык подсознательных умственных процессов. Он опубликовал свои находки в работе «Толкование сновидений» в 1900 году. Эта книга по праву может считаться самым существенным его вкладом в науку.

После очередных наблюдений за пациентами, в 1905 году была опубликована новая работа «Три очерка по теории сексуальности». Его теоретические выводы относительно сексуальной природы человека стали известны под названием «теория либидо», и эта теория вместе с открытием детской сексуальности явилась одной из главных причин того, что Фрейд был отвергнут своими собратьями по профессии и широкой публикой.

Ничего нового в этой враждебной конфронтации нет. Ученого преследовали с момента, когда он заложил и развил свою теорию и назвал ее психоанализом. Его утверждение, что невротические недуги, которым подвержены люди, являются следствием сексуальных сбоев, воспринималось респектабельными учеными мужами не более чем как непристойность. Его поразительный тезис об универсальности Эдипова комплекса (излагая упрощенно), когда маленький мальчик любит мать и ненавидит отца, казался скорее литературной выдумкой, нежели научной проблемой, достойной внимания ученого-психолога.

Большую роль в популяризации идей Фрейда сыграл другой великий ученый — Карл Юнг. Они шли вместе до 1912 года, когда пути ученых окончательно разошлись. Из друзей они превратились в соперников.

В 1921 году Лондонский университет объявил о начале цикла лекций о пяти великих ученых: физике Эйнштейне, каббалисте Бен-Баймониде, философе Спинозе, мистике Фило. Фрейд в этом списке был пятым. Его выдвинули на Нобелевскую премию за открытия в области психиатрии. Но получил премию коллега Фрейда Вагнер-Яуреггу за метод лечения
паралича путем резкого повышения температуры тела. Фрейд заявил, что Лондонский университет оказал ему большую честь, поставив рядом с Эйнштейном, а сама премия его не волнует. «Причем этому парню было намного легче, — добавлял Фрейд, — за ним стоял длинный ряд предшественников, начиная с Ньютона, в то время как мне пришлось в одиночку пробираться через джунгли. Нет ничего удивительного в том, что мой путь не слишком легок и я ненамного продвинулся вперед».

Более тридцати лет воздерживался Фрейд от выработки всеобъемлющей теории личности, хотя сделал за это время много важных и подробных наблюдений в своей работе с пациентами. Наконец в 1920 году он опубликовал первую из серии систематизированных теоретических работ «По ту сторону принципа удовольствия», за которой последовала замечательная серия брошюр, изданных в 1933 году под общим названием «Продолжение лекций по введению в психоанализ».

В этой работе он попытался пересмотреть свой ранний взгляд на внешние проявления инстинктов — любви и ненависти, вины и раскаяния, горя и зависти. До того как он начал размышлять над глубинной природой этих базисных явлений, он определял их с позиций логики чувств. Таким образом, история психоанализа прошла тот же путь, что и теоретическая физика: природа явления была понята позже, чем установлены законы его проявления.

Идеи Фрейда относительно групповой психологии оказали серьезное влияние на развитие превентивной и социальной психиатрии, особенно в той ее части, которая касается роли культурного фактора в образована неврозов. Его первый значительный вклад в теорию общества был сделан в работе «Тотем и табу» (1913), где он приложил выводы своих психологических теорий к обществу в целом. За этой работой последовали две другие — «Групповая психология и анализ «Я»» (1920) и «Цивилизация и ее неудовлетворенность» (1927). По иронии судьбы в этих работах содержится большая часть основных социологических идей, которые неофрейдисты использовали в своих теориях и которые они же отрицали как классически фрейдистские.

Когда Австрию оккупировали нацисты, знаменитый ученый не покинул Вену даже после того, как ему напомнили о еврейском происхождении. Фрейду грозил Освенцим, но за него вступился буквально весь мир: особенно негодовали испанский король, которого он некогда лечил, и датская королева. Добиться депортации Фрейда из Австрии пробовал по дипломатическим каналам президент США Франклин Рузвельт. Все решил звонок Бенито Муссолини, Фрейд лечил одного из его близких друзей, в ставку фюрера. Дуче лично попросил Адольфа Гитлера позволить Фрейду уехать. Генрих Гиммлер предложил вариант выкупа. Тут же нашлись желающие. Одной из бывших пациенток Фрейда, а затем верной ученицей была внучка Наполеона Мария Бонапарт, жена греческого принца Георга. Она заявила австрийскому гауляйтеру: «Я заплачу за учителя любую сумму». Нацистский генерал назвал цену: два великолепных дворца княгини — почти все, что у нее было. «Слава Богу, фамилию деда вы у меня отнять не сможете», — с презрением сказала
Мария Бонапарт, подписывая бумаги.

В Париже, куда привезли Фрейда, его встречали принц Георг и Мария Бонапарт. Под ноги Фрейду от ступенек вагона до «роллс-ройса» высокородной четы постелили ковровую дорожку из красного бархата, по которой некогда ступал дед Марии Наполеон, возвратившись в Париж после победы под Аустерлицем. Из глаз Фрейда потекли слезы.

Погостив у Марии Бонапарт, он отправился в Англию. Там его навестил Бернард Шоу. Проведя за беседой несколько часов, два упрямых старца расстались добрыми друзьями. А 23 сентября 1939 года Фрейд умер.

В последний путь его провожали только сыновья: Мартин, названный в честь клинициста Шарко, Эрнст, названный в честь первого учителя Фрейда, и Освальд, названный в честь отца Марты.

После кончины Фрейда осталось 2300 семейных писем и 1500 писем, адресованных Минне. Поговаривали, что они сенсационны, но, по завещанию Фрейда, их можно обнародовать только после 2000 года (что и было сделано незамедлительно, но ничего сенсационного в них найдено, к сожалению, не было).

Последний раз редактировалось RapStar; 04.10.2008 в 17:55.
RapStar вне форума   Ответить с цитированием
Старый 04.10.2008, 18:10   #6
RapStar
Модератор
 
Аватар для RapStar
 
Регистрация: 27.09.2008
Пол: Мужской
Локация:
Сообщений: 174
Вес репутации: 19
RapStar На правильном пути
Отправить сообщение для RapStar с помощью ICQ 86-306-920
Ссылка на профиль пользователя на сайте vkontakte.ru
Post Иван Петрович Павлов

Иван Петрович Павлов

(1849—1936)

Иван Петрович Павлов — выдающийся ученый, гордость отечественной науки, «первый физиолог мира», как назвали его коллеги на одном из международных съездов. Ему была присуждена Нобелевская премия, его избрали почетным членом ста тридцати академий и научных обществ.

Ни один из русских ученых того времени, даже Менделеев, не получил такой известности за рубежом. «Это звезда, которая освещает мир, проливая свет на еще не изведанные пути», — говорил о нем Герберт Уэллс. Его называли «романтической, почти легендарной личностью», «гражданином мира».

Иван Петрович Павлов родился 26 сентября 1849 года в Рязани. Его мать. Варвара Ивановна, происходила из семьи священника; отец, Петр Дмитриевич, был священником, служившим сначала на бедном приходе, но благодаря своему пастырскому рвению со временем ставшим настоятелем одного из лучших храмов Рязани. С раннего детства Павлов перенял от отца упорство в достижении цели и постоянное стремление к самосовершенствованию. По желанию своих родителей Павлов посещал начальный курс духовной семинарии, а в 1860 году поступил в рязанское духовное училище. Там он смог продолжить изучение предметов, интересовавших его больше всего, в частности естественных наук. Семинарист Иван Павлов особо преуспел по части дискуссий. Он остался заядлым спорщиком на всю жизнь, не любил, когда с ним соглашались, так и кидался на противника, норовя опровергнуть его аргументы.

В обширной отцовской библиотеке как-то Иван нашел книжку Г.Г. Леви с красочными картинками, раз и навсегда поразившими его воображение.

Называлась она «Физиология обыденной жизни». Прочитанная дважды, как учил отец поступать с каждой книгой (правило, которому в дальнейшем сын следовал неукоснительно), «Физиология обыденной жизни» так глубоко запала ему в душу, что и, будучи уже взрослым, «первый физиолог мира» при каждом удобном случае на память цитировал оттуда целые страницы. И кто знает — стал бы он физиологом, не случись в детстве эта неожиданная встреча с наукой, так мастерски, с увлечением изложенной.

Его страстное желание заняться наукой, особенно биологией, было подкреплено чтением популярных книг Д. Писарева, публициста и критика, революционного демократа, работы которого подвели Павлова к изучению теории Чарлза Дарвина.

В конце восьмидесятых годов русское правительство изменило свое предписание, разрешив студентам духовных семинарий продолжать образование в светских учебных заведениях. Увлекшись естественными науками, Павлов в 1870 году поступил в Петербургский университет на естественное отделение физико-математического факультета.

Студент Иван Павлов с головой погрузился в учение. Поселился он с одним из своих рязанских приятелей здесь же, на Васильевском острове, неподалеку от университета, в доме баронессы Раль. С деньгами было туго. Казенных харчей не хватало. Тем более что в результате перемещений с юридического отделения на естественное студент Павлов, как опоздавший, лишился стипендии и рассчитывать надо было теперь только на самого себя. Приходилось прирабатывать частными уроками, переводами, в студенческой столовой налегать главным образом на бесплатный хлеб, сдабривая его для разнообразия горчицей, благо его давали сколько угодно.

А самым близким другом для него стала в это время слушательница женских курсов Серафима Васильевна Карчевская, которая тоже приехала в Петербург учиться и мечтала стать учительницей.

Когда она, окончив учение, уехала в глухую провинцию, чтобы работать в сельской школе, Иван Павлов стал в письмах изливать ей душу.

Его интерес к физиологии возрос, после того как он прочитал книгу И. Сеченова «Рефлексы головного мозга», но освоить этот предмет ему удалось только после того, как он прошел обучение в лаборатории И. Циона, изучавшего роль депрессорных нервов. Как завороженный, слушал студент Павлов объяснения профессора. «Мы были прямо поражены его мастерски простым изложением самых сложных физиологических вопросов, — напишет он позже, — и его поистине артистической способностью ставить опыты. Такой учитель не забывается на всю жизнь. Под его руководством я делал свою первую физиологическую работу».

Первое научное исследование Павлова — изучение секреторной иннервации поджелудочной железы. За него И. Павлов и М. Афанасьев были награждены золотой медалью университета.

После получения в 1875 году звания кандидата естественных наук Павлов поступил на третий курс Медико-хирургической академии в СанктПетербурге (реорганизованной впоследствии в Военно-медицинскую), где надеялся стать ассистентом Циона, который незадолго до этого был назначен ординарным профессором кафедры физиологии. Однако Цион уехал из России, после того как правительственные чиновники воспрепятствовали этому назначению, узнав о его еврейском происхождении. Отказавшись работать с преемником Циона, Павлов стал ассистентом в Ветеринарном институте, где в течение двух лет продолжал изучение пищеварения и кровообращения.

Летом 1877 года он работал в городе Бреслау, в Германии, с Рудольфом Гейденгайном, специалистом в области пищеварения. В следующем году по приглашению С. Боткина Павлов начал работать в физиологической лаборатории при его клинике в Бреслау, еще не имея медицинской степени, которую Павлов получил в 1879 году. В лаборатории Боткина Павлов фактически руководил всеми фармакологическими и физиологическими исследованиями. В том же году Иван Петрович начал исследования по физиологии пищеварения, которые продолжались более двадцати лет. Многие исследования Павлова в восьмидесятых годах касались системы кровообращения, в частности, регуляции функций сердца и кровяного давления.

В 1881 году произошло счастливое событие: Иван Петрович женился на Серафиме Васильевне Карчевской, от которой у него родились четыре сына и дочь. Однако так хорошо начавшееся десятилетие стало самым тяжелым для него и для его семьи. «Не хватало денег, чтобы купить мебель, кухонную, столовую и чайную посуду», — вспоминала его жена.
Бесконечные скитания по чужим квартирам: долгое время Павловы жили вместе с братом Дмитрием в полагавшейся ему университетской квартире.

Тяжелейшее несчастье — гибель первенца, а буквально через год опять неожиданная смерть малолетнего сына, отчаяние Серафимы Васильевны, ее продолжительная болезнь. Все это выбивало из колеи, отнимало силы, столь необходимые для научных занятий.

И был такой год, который жена Павлова назовет «отчаянным», когда мужество изменило Ивану Петровичу. Он разуверился в своих силах и в возможности кардинально изменить жизнь семьи. И тогда Серафима Васильевна, которая уже не была той восторженной курсисткой, какой начинала свою семейную жизнь, принялась подбадривать и утешать мужа и вывела-таки его из глубокой меланхолии. По ее настоянию Иван Петрович вплотную занялся диссертацией.

После длительной борьбы с администрацией Военно-медицинской академии (отношения с которой стали натянутыми после его реакции на увольнение Циона) Павлов в 1883 году защитил диссертацию на соискание степени доктора медицины, посвященную описанию нервов, контролирующих функции сердца. Он был назначен приват-доцентом в Академию, но вынужден был отказаться от этого назначения в связи с дополнительной работой в Лейпциге с Гейденгайном и Карлом Людвигом, двумя наиболее выдающимися физиологами того времени. Через два года Павлов вернулся в Россию.

Впоследствии он напишет об этом скупо, несколькими фразами обрисовав столь многотрудное десятилетие: «Вплоть до профессуры в 1890 году, уже женатому и имевшему сына, в денежном отношении постоянно приходилось очень туго, наконец, на 41-м году жизни я получил профессуру, получил собственную лабораторию... Таким образом, вдруг оказались и достаточные денежные средства, и широкая возможность делать в лаборатории что хочешь».

К 1890 году труды Павлова получили признание со стороны ученых всего мира. С 1891 году он заведовал физиологическим отделом Института экспериментальной медицины, организованного при его деятельном участии; одновременно он оставался руководителем физиологических исследований в Военно-медицинской академии, в которой проработал с 1895 по 1925 год.

Будучи от рождения левшой, как и его отец, Павлов постоянно тренировал правую руку и в результате настолько хорошо владел обеими руками, что, по воспоминаниям коллег, «ассистировать ему во время операций было очень трудной задачей: никогда не было известно, какой рукой он будет действовать в следующий момент. Он накладывал швы правой и левой рукой с такой скоростью, что два человека с трудом успевали подавать ему иглы с шовным материалом».

В своих исследованиях Павлов использовал методы механистической и холистической школ биологии и философии, которые считались несовместимыми. Как представитель механицизма Павлов считал, что комплексная система, такая как система кровообращения или пищеварения, может быть понята путем поочередного исследования каждой из их частей; как представитель «философии целостности» он чувствовал, что эти части следует изучать у интактного, живого и здорового животного. По этой причине он выступал против традиционных методов вивисекции, при которых живые лабораторные животные оперировались без наркоза для наблюдения за работой их отдельных органов.

Считая, что умирающее на операционном столе и испытывающее боль животное не может реагировать адекватно здоровому, Павлов воздействовал на него хирургическим путем таким образом, чтобы наблюдать за деятельностью внутренних органов, не нарушая их функций и состояния животного. Мастерство Павлова в этой трудной хирургии было непревзойденным. Более того, он настойчиво требовал соблюдения того же уровня ухода, анестезии и чистоты, что и при операциях на людях.

Используя данные методы, Павлов и его коллеги показали, что каждый отдел пищеварительной системы — слюнные и дуоденальные железы, желудок, поджелудочная железа и печень — добавляет к пище определенные вещества в их различной комбинации, расщепляющие ее на всасываемые единицы белков, жиров и углеводов. После выделения нескольких пищеварительных ферментов Павлов начал изучение их регуляции и взаимодействия.

В 1904 году Павлов был награжден Нобелевской премией по физиологии и медицине «за работу по физиологии пищеварения, благодаря которой было сформировано более ясное понимание жизненно важных аспектов этого вопроса». В речи на церемонии вручения премии К.А.Г. Мёрнер из Каролинского института дал высокую оценку вкладу Павлова в физиологию и химию органов пищеварительной системы. «Благодаря работе Павлова мы смогли продвинуться в изучении этой проблемы дальше, чем за все предыдущие годы, — сказал Мёрнер. — Теперь мы имеем исчерпывающее представление о влиянии одного отдела пищеварительной системы на другой, т. е. о том, как отдельные звенья пищеварительного механизма приспособлены к совместной работе».

На протяжении всей своей научной жизни Павлов сохранял интерес к влиянию нервной системы на деятельность внутренних органов. В начале XX века его эксперименты, касающиеся пищеварительной системы, привели к изучению условных рефлексов. В одном из экспериментов, названных «мнимым кормлением», Павлов действовал просто и оригинально. Он проделал два «окошка»: одно — в стенке желудка, другое — в пищеводе. Теперь пища, которой кормили прооперированную и вылеченную собаку, не доходила до желудка, вываливалась из отверстия в пищеводе наружу. Но желудок успевал получить сигнал, что пища в организм поступила, и начинал готовиться к работе: усиленно выделять необходимый для переваривания сок. Его можно было спокойно брать из второго отверстия и исследовать без помех.

Собака могла часами глотать одну и ту же порцию пищи, которая дальше пищевода не попадала, а экспериментатор работал в это время с обильно льющимся желудочным соком. Можно было варьировать пищу и наблюдать, как соответственно меняется химический состав желудочного сока.

Но главное было в другом. Впервые удалось экспериментально доказать, что работа желудка зависит от нервной системы и управляется ею. Ведь в опытах мнимого кормления пища не попадала непосредственно в желудок, а он начинал работать. Стало быть, команду он получал по нервам, идущим от рта и пищевода. В то же время стоило перерезать идущие к желудку нервы — и сок переставал выделяться.

Другими способами доказать регулирующую роль нервной системы в пищеварении было просто невозможно. Ивану Петровичу это удалось сделать первым, оставив далеко позади своих зарубежных коллег и даже самого Р. Гейденгайна, чей авторитет был признан всеми в Европе и к которому Павлов совсем недавно ездил набираться опыта.

«Любое явление во внешнем мире может быть превращено во временный сигнал объекта, стимулирующий слюнные железы, — писал Павлов, — если стимуляция этим объектом слизистой оболочки ротовой полости будет связана повторно... с воздействием определенного внешнего явления на другие чувствительные поверхности тела».

Пораженный силой условных рефлексов, проливающих свет на психологию и физиологию, Павлов после 1902 года сконцентрировал свои научные интересы на изучении высшей нервной деятельности.

В институте, который располагался неподалеку от Петербурга, в местечке Колтуши, Павлов создал единственную в мире лабораторию по изучению высшей нервной деятельности. Ее центром была знаменитая «Башня молчания» — особое помещение, которое позволяло поместить подопытное животное в полную изоляцию от внешнего мира.

Исследуя реакции собак на внешние раздражители, Павлов установил, что рефлексы бывают условными и безусловными, то есть присущими животному от рождения. Это было его второе крупнейшее открытие в области физиологии.

Преданный своему делу и высокоорганизованный во всех аспектах своей работы, будь то операции, чтение лекций или проведение экспериментов, Павлов отдыхал в летние месяцы; в это время он с увлечением занимался садоводством и чтением исторической литературы. Как вспоминал один из его коллег, «он всегда был готов для радости и извлекал ее из сотен источников». Одним из увлечений Павлова было раскладывание пасьянсов. Как и о всяком большом ученом, о нем сохранилось множество анекдотов. Однако среди них нет таких, которые бы свидетельствовали о его академической рассеянности. Павлов был очень аккуратным и точным человеком.

Положение величайшего русского ученого защищало Павлова от политических коллизий, которыми изобиловали революционные события в России начала века. Так, после установления советской власти был издан специальный декрет за подписью Ленина о создании условий, обеспечивающих работу Павлова. Это было тем более примечательно, что большинство ученых находились в то время под надзором государственных органов, которые нередко вмешивались в их научную работу.

Известный своим упорством и настойчивостью в достижении цели, Павлов считался среди некоторых своих коллег и студентов педантом. В то же время он пользовался большим уважением в научном мире, а его личный энтузиазм и сердечность снискали ему многочисленных друзей.

Павлов умер 27 февраля 1936 года в Ленинграде от пневмонии. Говоря о своем научном творчестве, Павлов писал: «Что ни делаю, постоянно думаю, что служу этим, сколько позволяют мои силы, прежде всего моему отечеству, нашей русской науке».

Академией наук учреждены золотая медаль и премия имени И Павлова за лучшую работу в области физиологии.

Последний раз редактировалось RapStar; 04.10.2008 в 18:15.
RapStar вне форума   Ответить с цитированием
Старый 04.10.2008, 18:22   #7
RapStar
Модератор
 
Аватар для RapStar
 
Регистрация: 27.09.2008
Пол: Мужской
Локация:
Сообщений: 174
Вес репутации: 19
RapStar На правильном пути
Отправить сообщение для RapStar с помощью ICQ 86-306-920
Ссылка на профиль пользователя на сайте vkontakte.ru
Post Вильгельм Рентген

Вильгельм Рентген

(1845—1923)

В январе 1896 года над Европой и Америкой прокатился тайфун газетных сообщений о сенсационном открытии профессора Вюрцбургского университета Вильгельма Рентгена. Казалось не было газеты, которая бы не напечатала снимок кисти руки, принадлежащей, как выяснилось позже, Берте Рентген, жене профессора. А профессор Рентген, запершись у себя в лаборатории, продолжал усиленно изучать свойства открытых им лучей. Открытие рентгеновских лучей дало толчок новым исследованиям. Их изучение привело к новым открытиям, одним из которых явилось открытие радиоактивности.

Немецкий физик Вильгельм Конрад Рентген родился 27 марта 1845 года в Леннепе, небольшом городке близ Ремшейда в Пруссии, и был единственным ребенком в семье преуспевающего торговца текстильными товарами Фридриха Конрада Рентгена и Шарлотты Констанцы (в девичестве Фровейн) Рентген. В 1848 году семья переехала в голландский город Апельдорн, на родину родителей Шарлотты. Экспедиции, совершенные Вильгельмом в детские годы в густых лесах в окрестностях Апельдорна, на всю жизнь привили ему любовь к живой природе.

Рентген поступил в Утрехтскую техническую школу в 1862 году, но был исключен за то, что отказался назвать своего товарища, нарисовавшего непочтительную карикатуру на нелюбимого преподавателя. Не имея официального свидетельства об окончании среднего учебного заведения он формально не мог поступить в высшее учебное заведение, но в качестве вольнослушателя прослушал несколько курсов в Утрехтском университете. После сдачи вступительного экзамена в 1865 году Вильгельм был зачислен студентом в Федеральный технологический институт в Цюрихе, он намеревался стать инженером-механиком, и в 1868 году получил диплом. Август Кундт, выдающийся немецкий физик и профессор физики этого института, обратил внимание на блестящие способности Вильгельма и настоятельно посоветовал ему заняться физикой. Рентген последовал его совету и через год защитил докторскую диссертацию в Цюрихском университете, после чего был немедленно назначен Кундтом первым ассистентом в лаборатории.

Получив кафедру физики в Вюрцбургском университете (Бавария), Кундт взял с собой и своего ассистента. Переход в Вюрцбург стал для Рентгена началом «интеллектуальной одиссеи». В 1872 году он вместе с Кундтом перешел в Страсбургский университет и в 1874 году начал там свою преподавательскую деятельность в качестве лектора по физике.

В 1872 году Рентген вступил в брак с Анной Бертой Людвиг, дочерью владельца пансиона, которую он встретил в Цюрихе, когда учился в Федеральном технологическом институте. Не имея собственных детей, супруги, в 1881 году удочерили шестилетнюю Берту, дочь брата Рентгена.

В 1875 году Рентген стал полным (действительным) профессором физики Сельскохозяйственной академии в Гогенхейме (Германия), а в 1876 году вернулся в Страсбург, чтобы приступить там к чтению курса теоретической физики.

Экспериментальные исследования, проведенные Рентгеном в Страсбурге, касались разных областей физики, таких как теплопроводность кристаллов и электромагнитное вращение плоскости поляризации света в газах, и, по словам его биографа Отто Глазера, снискали Рентгену репутацию «тонкого классического физика-экспериментатора». В 1879 году Рентген был назначен профессором физики Гессенского университета, в котором он оставался до 1888 года, отказавшись от предложений занять кафедру физики в университетах Иены и Утрехта. В 1888 году он возвращается в Вюрцбургский университет в качестве профессора физики и директора Физического института, где продолжает вести экспериментальные исследования широкого круга проблем, в т.ч. сжимаемости воды и электрических свойств кварца.

В 1894 году, когда Рентген был избран ректором университета, он приступил к экспериментальным исследованиям электрического разряда в стеклянных вакуумных трубках. Вечером 8 ноября 1895 года Рентген, как обычно, работал в своей лаборатории, занимаясь изучением катодных лучей. Около полуночи, почувствовав усталость, он собрался уходить. Окинув взглядом лабораторию, погасил свет и хотел было закрыть дверь,
как вдруг заметил в темноте какое-то светящееся пятно. Оказывается, светился экран из синеродистого бария. Почему он светится? Солнце давно зашло, электрический свет не мог вызвать свечения, катодная трубка выключена, да и, вдобавок, закрыта черным чехлом из картона. Рентген еще раз посмотрел на катодную трубку и упрекнул себя, ведь он забыл ее выключить. Нащупав рубильник, ученый выключил трубку. Исчезло и свечение экрана; включал трубку, вновь и вновь появлялось свечение. Значит свечение вызывает катодная трубка! Но каким образом? Ведь катодные лучи задерживаются чехлом, да и воздушный метровый промежуток между трубкой и экраном для них является броней. Так началось рождение открытия.

Оправившись от минутного изумления. Рентген начал изучать обнаруженное явление и новые лучи, названные им икс-лучами. Оставив футляр на трубке, чтобы катодные лучи были закрыты, он с экраном в руках начал двигаться по лаборатории. Оказалось, что полтора-два метра для этих неизвестных лучей не преграда. Они легко проникают через книгу, стекло, станиоль... А когда рука ученого оказалась на пути неизвестных лучей, он увидел на экране силуэт ее костей! Фантастично и жутковато! Но это только минута, ибо следующим шагом Рентгена был шаг к шкафу, где лежали фотопластинки, т. к. надо было увиденное закрепить на снимке. Так начался новый ночной эксперимент. Ученый обнаруживает, что лучи засвечивают пластинку, что они не расходятся сферически вокруг трубки, а имеют определенное направление...

Утром обессиленный Рентген ушел домой, чтобы немного передохнуть, а потом вновь начать работать с неизвестными лучами. Пятьдесят суток (дней и ночей) были принесены на алтарь небывалого по темпам и глубине исследования. Были забыты на это время семья, здоровье, ученики и студенты. Он никого не посвящал в свою работу до тех пор, пока не разобрался во всем сам. Первым человеком, кому Рентген продемонстрировал свое открытие, была его жена Берта. Именно снимок ее кисти, с обручальным кольцом на пальце, был приложен к статье Рентгена «О новом роде лучей», которую он 28 декабря 1895 году направил председателю Физико-медицинского общества университета. Статья была быстро выпущена в виде отдельной брошюры, и Рентген разослал ее ведущим физикам Европы.

Первое сообщение об исследованиях Рентгена, опубликованное в местном научном журнале в конце 1895 года, вызвало огромный интерес и в научных кругах, и у широкой публики. «Вскоре мы обнаружили, — писал Рентген, — что все тела прозрачны для этих лучей, хотя и в весьма различной степени». А 20 января 1896 года американские врачи с помощью лучей Рентгена уже впервые увидели перелом руки человека. С тех пор открытие немецкого физика навсегда вошло в арсенал медицины.

Открытие Рентгена вызвало огромный интерес в научном мире. Его опыты были повторены почти во всех лабораториях мира. В Москве их повторил П.Н. Лебедев. В Петербурге изобретатель радио А.С. Попов экспериментировал с икс-лучами, демонстрировал их на публичных лекциях, получая различные рентгенограммы. В Кембридже Д.Д. Томсон немедленно применил ионизирующее действие рентгеновских лучей для изучения прохождения электричества через газы. Его исследования привели к открытию электрона.

Рентген опубликовал еще две статьи об икс-лучах в 1896 и 1897 годах, но затем его интересы переместились в другие области. Медики сразу оценили значение рентгеновского излучения для диагностики. В то же время икс-лучи стали сенсацией, о которой раструбили по всему миру газеты и журналы, нередко подавая материалы на истерической ноте или
с комическим оттенком.

Росла слава Рентгена, но ученый относился к ней с полнейшим равнодушием. Рентгена раздражала внезапно свалившаяся на него известность, отрывавшая у него драгоценное время и мешавшая дальнейшим экспериментальным исследованиям. По этой причине он стал редко выступать с публикациями статей, хотя и не прекращал это делать полностью за свою жизнь Рентген написал 58 статей. В 1921 году, когда ему было 76 лет. он опубликовал статью об электропроводимости кристаллов.

Ученый не стал брать патент на свое открытие, отказался от почетной, высокооплачиваемой должности члена академии наук, от кафедры физики в Берлинском университете, от дворянского звания. Вдобавок ко всему он умудрился восстановить против себя самого кайзера Германии Вильгельма II.

В 1899 году, вскоре после закрытия кафедры физики в Лейпцигском университете. Рентген стал профессором физики и директором Физического института при Мюнхенском университете. Находясь в Мюнхене, Рентген узнал о том, что он стал первым лауреатом Нобелевской премии 1901 года по физике «в знак признания необычайно важных заслуг перед наукой, выразившихся в открытии замечательных лучей, названных впоследствии в его честь». При презентации лауреата К.Т. Одхнер, член Шведской королевской академии наук, сказал: «Нет сомнения в том, сколь большого успеха достигнет физическая наука, когда эта неведомая раньше форма энергии будет достаточно исследована». Затем Одхнер напомнил собравшимся о том, что рентгеновские лучи уже нашли многочисленные практические приложения в медицине.

Эту награду принял Рентген с радостью и волнением, но из-за своей застенчивости отказался от каких-либо публичных выступлений.

Хотя самим Рентгеном и другими учеными много было сделано по изучению свойств открытых лучей, однако природа их долгое время оставалась неясной. Но вот в июне 1912 году в Мюнхенском университете, где с 1900 года работал Рентген, М. Лауэ, В. Фридрихом и П. Книппингом была открыта интерференция и дифракция рентгеновских лучей, что доказывало их волновую природу. Когда обрадованные ученики прибежали к своему учителю, их ждал холодный прием. Рентген просто не поверил во все эти сказки про интерференцию; раз он сам не нашел ее в свое время, значит, ее нет. Но молодые ученые уже привыкли к странностям своего шефа и решили, что сейчас лучше не спорить с ним, пройдет некоторое время и Рентген сам признает свою неправоту, ведь у всех в памяти была свежа история с электроном.

Рентген долгое время не только не верил в существование электрона, но даже запретил в своем физическом институте упоминать это слово. И только в мае 1905 года, зная, что его русский ученик А.Ф. Иоффе на защите докторской диссертации будет говорить на запрещенную тему, он, как бы между прочим, спросил его: «А вы верите, что существуют шарики, которые расплющиваются, когда движутся?» Иоффе ответил: «Да, я уверен, что они существуют, но мы не все о них знаем, а следовательно, надо их изучать». Достоинство великих людей не в их странностях, а в умении работать и признавать свою неправоту. Через два года в Мюнхенском физическом институте было снято «электронное табу», более того. Рентген, словно желая искупить свою вину, пригласил на кафедру теоретической физики самого Лоренца — создателя электронной теории, но ученый не смог принять это предложение.

А дифракция рентгеновских лучей вскоре стала не просто достоянием физиков, а положила начало новому, очень сильному методу исследования структуры вещества — рентгеноструктурному анализу. В 1914 году М. Лауэ за открытие дифракции рентгеновских лучей, а в 1915 году отец и сын Брэгги за изучение структуры кристаллов с помощью этих лучей стали лауреатами Нобелевской премии по физике. В настоящее время известно, что рентгеновские лучи — это коротковолновое электромагнитное излучение с большой проникающей способностью.

Рентген был вполне удовлетворен сознанием того, что его открытие имеет столь большое значение для медицины. Помимо Нобелевской премии он был удостоен многих наград, в том числе медали Румфорда Лондонского королевского общества, золотой медали Барнарда за выдающиеся заслуги перед наукой Колумбийского университета, и состоял почетным членом и членом-корреспондентом научных обществ многих стран.

Скромному, застенчивому Рентгену, как уже говорилось, глубоко претила сама мысль о том, что его персона может привлекать всеобщее внимание. Он любил бывать на природе, много раз посещал во время отпусков Вейльхайм, где совершал восхождения на соседние баварские Альпы и охотился с друзьями. Рентген ушел в отставку со своих постов в Мюнхене в 1920 году, вскоре после смерти жены. Он умер 10 февраля 1923 года от рака внутренних органов.

Закончить рассказ о Рентгене стоит словами одного из создателей советской физики А.Ф. Иоффе, хорошо знавшего великого экспериментатора: «Рентген был большой и цельный человек в науке и жизни. Вся его личность, его деятельность и научная методология принадлежат прошлому. Но только на фундаменте, созданном физиками XIX века и, в частности, Рентгеном, могла появиться современная физика».

Последний раз редактировалось RapStar; 04.10.2008 в 18:26.
RapStar вне форума   Ответить с цитированием
Ответ


Здесь присутствуют: 1 (пользователей: 0 , гостей: 1)
 

Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Быстрый переход


Часовой пояс GMT +3, время: 09:15.

Рейтинг сайтов Ufolog.ru
Форум Непознанное основан в 2008 году. При копировании материалов форума, обратная ссылка обязательна.   Обратная связь - Непознанное. - Вверх

Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd. Перевод: zCarot